files/journal/2022-09-02_12-20-40-000000_622.png

International Journal of Soft Computing

ISSN: Online
ISSN: Print 1816-9503
110
Views
1
Downloads

Generalization of Minkowski Distance Metrics in Mixed Case Analysis for Web Intrusion Detection System

K.G. Maheswari and R. Anita
Page: 274-278 | Received 21 Sep 2022, Published online: 21 Sep 2022

Full Text Reference XML File PDF File

Abstract

The rapid growth of the web applications are resulted in severe security issues which gives out various classifications of attacks related with web usages. These attacks are generalized by different characteristics and methods to make the system vulnerable for the easy injection of threats. In this study, the mixed case analysis using distance metrics is designed to classify the various types of web attacks based on the severity of the vulnerability. The set of network and web related attributes are taken from the renowned datasets which is dynamically stored in the log server for the future reference. Hence, these datasets are extracted for the detection system by classifying the attack, instantaneously generates the classes of data clusters. These clusters are used for learning metric in mixed cases for analysing the web related attacks in the renowned datasets.


How to cite this article:

K.G. Maheswari and R. Anita. Generalization of Minkowski Distance Metrics in Mixed Case Analysis for Web Intrusion Detection System.
DOI: https://doi.org/10.36478/ijscomp.2015.274.278
URL: https://www.makhillpublications.co/view-article/1816-9503/ijscomp.2015.274.278