files/journal/2022-09-02_11-59-20-000000_418.png

Asian Journal of Information Technology

ISSN: Online 1993-5994
ISSN: Print 1682-3915
115
Views
4
Downloads

Performance Evaluation of Classification Models for Household Income, Consumption and Expenditure Data Set

Mersha Nigus and Dorsewamy
Page: 134-140 | Received 21 Sep 2022, Published online: 21 Sep 2022

Full Text Reference XML File PDF File

Abstract

Food security is more prominent on the policy agenda today than it has been in the past, thanks to recent food shortages at both the regional and global levels as well as renewed promises from major donor countries to combat chronic hunger. One field where machine learning can be used is in the classification of household food insecurity. In this study, we establish a robust methodology to categorize whether or not a household is being food secure and food insecure by machine learning algorithms. In this study, we have used ten machine learning algorithms to classify the food security status of the Household. Gradient Boosting (GB), Random Forest (RF), Extra Tree (ET), Bagging, K-Nearest Neighbor (KNN), Decision Tree (DT), Support Vector Machine (SVM), Logistic Regression (LR), Ada Boost (AB) and Naive Bayes were the classification algorithms used throughout this study (NB). Then, we perform classification tasks from developing data set for household food security status by gathering data from HICE survey data and validating it by Domain Experts. The performance of all classifiers has better results for all performance metrics. The performance of the Random Forest and Gradient Boosting models are outstanding with a testing accuracy of 0.9997 and the other classifier such as Bagging, Decision tree, Ada Boost, Extra tree, K-nearest neighbor, Logistic Regression, SVM and Naive Bayes are scored 0.9996, 0.09996, 0.9994, 0.95675, 0.9415, 0.8915, 0.7853 and 0.7595, respectively.


How to cite this article:

Mersha Nigus and Dorsewamy . Performance Evaluation of Classification Models for Household Income, Consumption and Expenditure Data Set.
DOI: https://doi.org/10.36478/ajit.2021.134.140
URL: https://www.makhillpublications.co/view-article/1682-3915/ajit.2021.134.140