files/journal/2022-09-02_12-23-15-000000_142.png

International Journal of System Signal Control and Engineering Application

ISSN: Online
ISSN: Print 1997-5422
148
Views
1
Downloads

Classification Model using Neural Network for Centrifugal Pump Fault Detection

Eslam Sayed, Ahmed A. Abdelsamee and Nouby M. Ghazaly
Page: 120-126 | Received 21 Sep 2022, Published online: 21 Sep 2022

Full Text Reference XML File PDF File

Abstract

The different utilities of centrifugal pumps made the potential for fault occurrence inevitable thus early fault diagnosis is essential for such machines to prevent further losses in different demands. In this study, a vibration-based condition monitoring with the development of the Artificial Neural Network (ANN) model for fault classification and detection. The Multilayer perceptron network with the back-propagation algorithm model is that the most ordinarily used network nowadays. The neural network ability to internally learn from examples makes them more engaging and exciting in the data mining scientific field, rather than following a collection of rules such that by human consultants. This paper deals with the evaluation and development of the ANN model for fault recognition in a centrifugal pumping system with two faults simulated which were seal and particle impurities hitting the impeller. Data required to feed the network extracted from the time-domain vibration raw signal. Results showed great potential for using ANN as a fault diagnosis; the recognition rate of the network was 0.958.


How to cite this article:

Eslam Sayed, Ahmed A. Abdelsamee and Nouby M. Ghazaly. Classification Model using Neural Network for Centrifugal Pump Fault Detection.
DOI: https://doi.org/10.36478/ijssceapp.2020.120.126
URL: https://www.makhillpublications.co/view-article/1997-5422/ijssceapp.2020.120.126