files/journal/2022-09-02_11-59-20-000000_418.png

Asian Journal of Information Technology

ISSN: Online 1993-5994
ISSN: Print 1682-3915
96
Views
2
Downloads

Scalable Real Time Botnet Detection System for Cyber-Security

V. Vanitha, V.P. Sumathi, Sindhu Arumugam and Nandhini Selvam
Page: 670-675 | Received 21 Sep 2022, Published online: 21 Sep 2022

Full Text Reference XML File PDF File

Abstract

Malicious malware can exploit vulnerabilities in the internet computing environment without the user’s knowledge. Today, different types of malware exist in the Internet. Among them one of the malware is known as botnet which is frequently used for many cyber attacks and crimes in the Internet. The aim of this study is to develop a scalable botnet detection framework which will be able to identify and remove stealthy botnets from the real-world network traffic. ‘Storm’ real time, distributed, reliable, fault-tolerant software is used in this work for analyzing the streams of data. Experimental results show that random forest has higher accuracy rate than fuzzy c-means but clustering algorithm is useful to detect the botnet in real time processing.


How to cite this article:

V. Vanitha, V.P. Sumathi, Sindhu Arumugam and Nandhini Selvam. Scalable Real Time Botnet Detection System for Cyber-Security.
DOI: https://doi.org/10.36478/ajit.2016.670.675
URL: https://www.makhillpublications.co/view-article/1682-3915/ajit.2016.670.675