Agricultural Journal
Volume 17, Issue 4 (2022)

MAK Hill offering peer-reviewed open access journal concerned with the advance fields of agricultural science and technology

Submit an Article Journal Home Page
Review Article

The Role of Modern Plant Breeding to Control Plant Disease: A Review

Getaw Abera Zewdu, Wubamilak Tamene, Zekaryas Assefa, Tihtina Tamiru, Lemilem Bankseni, Muktar Borja, Seada Nesru, Tejriba Hasen
Page: 19-27 | Received 16 Mar 2023, Accepted 19 Nov 2022, Published online: 16 Mar 2023

Full Text Reference XML File PDF File


Modern agriculture should be able to support the world's rising population, which is estimated to rise from 7.3 billion in 2015 to at least 9.8 billion by 2050. To feed all of these people, food production should have to increase by 60‐70%. However, plant diseases remain the most challenging tasks for plant breeders to achieve these goals. To address these issues, many researchers are still investigating the mechanisms plants defend themselves against disease. Traditional and modern plant breeding practices have played a critical role in guaranteeing food security. However, isolation possibilities for resistance factors are currently limited in traditional breeding programs. Thus, modern plant breeding techniques can be used to select, or in the case of genetic modification, to insert desirable features into plants, using molecular biology techniques. Marker assisted selection, transgenic techniques, RNA interference technologies, tissue culture and CRISPR/cas9 genome editing approaches are the modern plant breeding tools that provide resistance to plant diseases. Here, we attempt to discuss the basic concepts and characteristics of modern plant breeding as well as how modern technologies might be effectively investigated to promote crop
improvement in the face of increasing challenging plant production conditions.


  1. Tilman, D., C. Balzer, J. Hill and B.L. Befort, 2011. Global food demand and the sustainable intensification of agriculture. Proc. Nat. Acad. Sci., 108: 20260-20264.
  2. Oerke, E.-C. and H.-W. Dehne, 2004. Safeguarding production—losses in major crops and the role of crop protection. Crop Prot., 23: 275-285.
  3. Borém, A., M.A.P. Ramalho and R. Fritsche-Neto, 2012. Abiotic Stresses: Challenges for Plant Breeding in the Coming Decades. In: Plant Breeding for Abiotic Stress Tolerance., Fritsche-Neto, R. and A. Borém, (Eds.)., Springer Berlin, Heidelberg, Berlin, ISBN-17: 978-3-642-30552-8, pp: 1-12.
  4. Acquaah, G., 2012. Principles of Plant Genetics and Breeding. 2nd Edn., John Wiley & Sons, Ltd, ISBN-13: 9781118313718, Pages: 740.
  5. Al-Khayri, J.M., S.M. Jain and D.V. Johnson, 2015. Advances in Plant Breeding Strategies: Breeding, Biotechnology and Molecular Tools. 1st Edn., Springer Cham, ISBN-17: 978-3-319-79407-5, Pages: 656.
  6. Jakowitsch, J., M.F. Mette, J.V. Winden, M.A. Matzke and A.J.M. Matzke, 1999. Integrated pararetroviral sequences define a unique class of dispersed repetitive DNA in plants. Proc. Nat. Acad. Sci., 96: 13241-13246.
  7. Bashir, E.M.A., A.M. Ali, A.M. Ali, A.E. Melchinger, H.K. Parzies and B.I.G. Haussmann, 2013. Characterization of Sudanese pearl millet germplasm for agro-morphological traits and grain nutritional values. Plant Genet. Resour., 12: 35-47.
  8. Onasanya, A., A. Basso, E. Somado, E.R. Gasore and F.E. Nwilene et al., 2010. Withdrawn: Development of a combined molecular diagnostic and DNA fingerprinting technique for rice bacteria pathogens in Africa. Biotechnology, 9: 89-105.
  9. Brummer, E.C., W.T. Barber, S.M. Collier, T.S. Cox and R. Johnson et al., 2011. Plant breeding for harmony between agriculture and the environment. Front. Ecol. Environ., 9: 561-568.
  10. Tester, M. and P. Langridge, 2010. Breeding technologies to increase crop production in a changing world. Science, 327: 818-822.
  11. Raggi, L., S. Ciancaleoni, R. Torricelli, V. Terzi, S. Ceccarelli and V. Negri, 2017. Evolutionary breeding for sustainable agriculture: Selection and multi-environmental evaluation of barley populations and lines. Field Crops Res., 204: 76-88.
  12. Sharma, A., J.B. Jones and F.F. White, 2019. Recent advances in developing disease resistance in plants. F1000Research, Vol. 8. 10.12688/f1000research.20179.1.
  13. Bhargava, A. and S. Srivastava, 2019. Toward Participatory Plant Breeding. In: Participatory Plant Breeding: Concept and Applications, Bhargava, A. and S. Srivastava, (Eds.)., Springer, Singapore, Singapore, ISBN-17: 978-981-13-7119-6, pp: 69-86.
  14. Collard, B.C.Y. and D.J. Mackill, 2007. Marker-assisted selection: An approach for precision plant breeding in the twenty-first century. Philosophical Trans. Royal Soc. B: Bio. Sci., 363: 557-572.
  15. Ufaz, S. and G. Galili, 2008. Improving the content of essential amino acids in crop plants: Goals and opportunities. Plant Physiol., 147: 954-961.
  16. Barkla, B.J., R. Vera-Estrella and O. Pantoja, 2013. Progress and challenges for abiotic stress proteomics of crop plants. PROTEOMICS, 13: 1801-1815.
  17. Senthil-Kumar, M. and M. Udayakumar, 2010. Post Transcriptional Gene Silencing Methods for Functional Characterization of Abiotic Stress Responsive Genes in Plants. In: Gene Silencing: Theory, Techniques and Applications, Catalano, A.J., (Ed.)., Nova Science Publishers, Inc.,, ISBN-17: 978-1-61728-276-8, pp: 271-286.
  18. Herman, E.M., R.M. Helm, R. Jung and A.J. Kinney, 2003. Genetic modification removes an immunodominant allergen from soybean, . Plant Physiol., 132: 36-43.
  19. Rogers, D.L , 2004. Genetic erosion: No longer just an agricultural issue. Native Plants J., 5: 112-122.
  20. Kumar, M., M.A. Yusuf, M. Nigam and M. Kumar, 2018. An update on genetic modification of chickpea for increased yield and stress tolerance. Mol. Biotechnol., 60: 651-663.
  21. Smith, B.D., 2001. Documenting plant domestication: The consilience of biological and archaeological approaches. Proc. Nat. Acad. Sci., 98: 1324-1326.
  22. Miah, G., M.Y. Rafii, M.R. Ismail, A.B. Puteh, H.A. Rahim, R. Asfaliza and M.A. Latif, 2012. Blast resistance in rice: A review of conventional breeding to molecular approaches. Mol. Biol. Rep., 40: 2369-2388.
  23. Krimsky, S., 2019. Traditional Plant Breeding. In: GMOs Decoded: A Skeptic's View Of Genetically Modified Foods, Krimsky, S., (Ed.)., MIT Press, Cambridge, Massachusetts, ISBN-25: 9780262039192, 0262039192, pp: 10-103.
  24. Tang, D., G. Wang and J.M. Zhou, 2017. Receptor kinases in plant-pathogen interactions: More than pattern recognition. The Plant Cell, 29: 618-637.
  25. Jiang, G., 2013. Molecular Markers and Marker-Assisted Breeding in Plants. In: Plant Breeding from Laboratories to Fields., Andersen, S.B., (Ed.)., IntechOpen, ISBN-17: 978-953-51-1090-3, pp: 45-83.
  26. He, J., X. Zhao, A. Laroche, Z.X. Lu, H. Liu and Z. Li, 2014. Genotyping-by-sequencing (GBS), an ultimate marker-assisted selection (MAS) tool to accelerate plant breeding. Front. Plant Sci., Vol. 5. 10.3389/fpls.2014.00484.
  27. Madina, M.H., M.E. Haque, A.K. Dutta, M.A. Islam, A.C. Deb and B. Sikdar, 2013. Estimation of genetic diversity in six lentil (Lens culinaris Medik.) varieties using morphological and biochemical markers. Int. J. Sci. Eng. Res., Vol. 4..
  28. Agarwal, M., N. Shrivastava and H. Padh, 2008. Advances in molecular marker techniques and their applications in plant sciences. Plant Cell Rep., 27: 617-631.
  29. Arens, P., C. Mansilla, D. Deinum, L. Cavellini and A. Moretti et al., 2009. Development and evaluation of robust molecular markers linked to disease resistance in tomato for distinctness, uniformity and stability testing. Theor. Appl. Genet., 120: 655-664.
  30. Lagudah, E.S., H. McFadden, R.P. Singh, J. Huerta-Espino, H.S. Bariana and W. Spielmeyer, 2006. Molecular genetic characterization of the Lr34/Yr18 slow rusting resistance gene region in wheat. Theor. Appl. Genet., 114: 21-30.
  31. Hiebert, C.W., T.G. Fetch, T. Zegeye, J.B. Thomas and D.J. Somers et al., 2010. Genetics and mapping of seedling resistance to Ug99 stem rust in Canadian wheat cultivars ‘Peace’ and ‘AC Cadillac’. Theor. Appl. Genet., 122: 143-149.
  32. Galiano-Carneiro, A.L. and T. Miedaner, 2017. Genetics of resistance and pathogenicity in the maize/Setosphaeria turcica pathosystem and implications for breeding. Front. Plant Sci., Vol. 8. 10.3389/fpls.2017.01490.
  33. Xu, Z., X. Xu, Q. Gong, Z. Li and Y. Li et al., 2019. Engineering broad-spectrum bacterial blight resistance by simultaneously disrupting variable tale-binding elements of multiple susceptibility genes in rice. Mol. Plant, 12: 1434-1446.
  34. Chen, H., S. Wang and Q. Zhang, 2002. New gene for bacterial blight resistance in rice located on chromosome 12 identified from minghui 63, an elite restorer line. Phytopathology, 92: 750-754.
  35. Tian, D., X. Guo, Z. Zhang, M. Wang and F. Wang, 2019. Improving blast resistance of the rice restorer line, Hui 316, by introducing Pi9 or Pi2 with marker-assisted selection. Biotechnol. Biotechnol. Equip., 33: 1195-1203.
  36. Nishizawa, Y., Z. Nishio, K. Nakazono, M. Soma, E. Nakajima, M. Ugaki and T. Hibi, 1999. Enhanced resistance to blast (Magnaporthe grisea) in transgenic japonica rice by constitutive expression of rice chitinase. Theor. Appl. Genet., 99: 383-390.
  37. Cornelissen, B. and L.S. Melchers, 1993. Strategies for control of fungal diseases with transgenic plants. Plant Physiol., 101: 709-712.
  38. Strange, R.N. and P.R. Scott, 2005. Plant disease: A threat to global food security. Annual Rev. Phytopathology, 43: 83-116.
  39. Eastwood, R.F., E.S. Lagudah and R. Appels, 1994. A directed search for DNA sequences tightly linked to cereal cyst nematode resistance genes in Triticum tauschii. Genome, 37: 311-319.
  40. Stein, N., C. Feuillet, T. Wicker, E. Schlagenhauf and B. Keller, 2000. Subgenome chromosome walking in wheat: A 450-kb physical contig in Triticum monococcum L. spans the Lr10 resistance locus in hexaploid wheat (Triticum aestivum L.). Proc. Nat. Acad. Sci., 97: 13436-13441.
  41. Coca, M., C. Bortolotti, M. Rufat, G. Peñas and R. Eritja et al., 2004. Transgenic rice plants expressing the antifungal AFP protein from Aspergillus giganteus show enhanced resistance to the rice blast fungus Magnaporthe grisea. Plant Mol. Biol., 54: 245-259.
  42. Rajasekaran, K., J.W. Cary, J.M. Jaynes and T.E. Cleveland, 2005. Disease resistance conferred by the expression of a gene encoding a synthetic peptide in transgenic cotton (Gossypium hirsutum L.) plants. Plant Biotechnol. J., 3: 545-554.
  43. Varshney, R., A. Graner and M. Sorrells, 2005. Genomics-assisted breeding for crop improvement. Trends Plant Sci., 10: 621-630.
  44. Ding, S.W., 2010. Rna-based antiviral immunity. Nat. Rev. Immunol., 10: 632-644.
  45. Karthikeyan, A., M. Deivamani, V.G. Shobhana, M. Sudha and T. Anandhan, 2013. Rna interference: Evolutions and applications in plant disease management. Arch. Phytopathol. Plant Prot., 46: 1430-1441.
  46. M.U. Rahman, I. Ali, T. Husnain and S. Riazuddin, 2008. RNA interference: The story of gene silencing in plants and humans. Biotechnol. Adv., 26: 202-209.
  47. Simón-Mateo, C. and J.A. García, 2011. Antiviral strategies in plants based on RNA silencing. Biochim. Biophys. Acta (BBA) Gene Regul. Mech., 1809: 722-731.
  48. Escobar, M.A., E.L. Civerolo, K.R. Summerfelt and A.M. Dandekar, 2001. Rnai-mediated oncogene silencing confers resistance to crown gall tumorigenesis. Proc. Nat. Acad. Sci., 98: 13437-13442.
  49. Stilio, V.S.D., R.A. Kumar, A.M. Oddone, T.R. Tolkin, P. Salles and K. McCarty, 2010. Virus-induced gene silencing as a tool for comparative functional studies in thalictrum. PLoS ONE, Vol. 5. 10.1371/journal.pone.0012064.
  50. Tuttle, J.R., A.M. Idris, J.K. Brown, C.H. Haigler and D. Robertson, 2008. Geminivirus-mediated gene silencing from Cotton leaf crumple virus is enhanced by low temperature in cotton  . Plant Physiol., 148: 41-50.
  51. Fofana, I.B.F., A. Sangaré, R. Collier, C. Taylor and C.M. Fauquet, 2004. A geminivirus-induced gene silencing system for gene function validation in cassava. Plant Mol. Biol., 56: 613-624.
  52. Purkayastha, A., S. Sharma and I. Dasgupta, 2010. A negative element in the downstream region of the Rice tungro bacilliform virus promoter is orientation- and position-independent and is active with heterologous promoters. Virus Res., 153: 166-171.
  53. Huang, C.J., T. Zhang, F.F. Li, X.Y. Zhang and X.P. Zhou, 2011. Development and application of an efficient virus-induced gene silencing system in Nicotiana tabacum using geminivirus alphasatellite. J. Zhejiang Uni. Sci. B, 12: 83-92.
  54. Bachraz, D.Y., 1998. The role of tissue culture in agricultural diversification. Agric. Res. Council, Réduit, Mauritius, 1995: 96-101.
  55. Tiwari, A., S. Yadav, S. Tripathi, J. Rastogi, J. Bharti, M. Lal and M. Sharma, 2008. Performance of micropropogated, SCYLV infected and healthy plants of sugarcane. Indian J. Sugarcane Technol., 23: 41-44.
  56. Ghag, S.B., U.K.S. Shekhawat and T.R. Ganapathi, 2015. Fusarium wilt of banana: Biology, epidemiology and management. Informa UK Limited, Int. J. Pest Manage., 61: 250-263.
  57. Edward, M., 2008. Performance of tissue-cultured sweet potatoes among smallholder farmers in Zimbabwe. AgBioForum., 11: 48-57.
  58. Fuglie, K.O., L. Zhang, L.F. Salazar and T.S. Walker, 1999. Economic Impact of Vitus-Free Sweet Potato Planting Material in Shandong Province, China. International Potato Center Lima, Peru, Peru, ISBN-14: 920-9060-201-5, Pages: 27.
  59. Njuguna, J., S. Nguthi, F. Wambugu, D. Gitau and M. Karuoya, 2011. Enhancing banana crop management by use of tissue-culture derived planting material in Kenya. ISHS Acta Hortic., 897: 367-378.
  60. Raman, H. and P.B. Goodwin, 2000. In vitro screening of apple germplasm for resistance against black spot caused by Venturia inaequalis. J. New Seeds, 2: 37-46.
  61. Chandra, R., M. Kamle, A. Bajpai, M. Muthukumar and S. Kalim, 2010. In vitro selection: A candidate approach for disease resistance breeding in fruit crops. Asian J. Plant Sci., 9: 437-446.
  62. Marraffini, L.A. and E.J. Sontheimer, 2010. Crispr interference: Rna-directed adaptive immunity in bacteria and archaea. Nat. Rev. Genet., 11: 181-190.
  63. Bortesi, L. and R. Fischer, 2015. The crispr/cas9 system for plant genome editing and beyond. Biotechnol. Adv., 33: 41-52.
  64. Peng, A., S. Chen, T. Lei, L. Xu and Y. He et al., 2017. Engineering canker-resistant plants through CRISPR/Cas9-targeted editing of the susceptibility gene Cslob1 Promoter in citrus. Plant Biotechnol. J., 15: 1509-1519.
  65. Gomez, M.A., Z.D. Lin, T. Moll, R.D. Chauhan and L. Hayden et al., 2018. Simultaneous CRISPR/Cas9-mediated editing of cassava eiF4E isoforms nCBP-1 and nCBP-2 reduces cassava brown streak disease symptom severity and incidence. Plant Biotechnol. J., 17: 421-434.
  66. Büttner, D. and S.Y. He, 2009. Type iii protein secretion in plant pathogenic bacteria. Plant Physiol., 150: 1656-1664.
  67. Zaidi, S.S.E.A., M.S. Mukhtar and S. Mansoor, 2018. Genome editing: Targeting susceptibility genes for plant disease resistance. Trends Biotechnol., 36: 898-906.
  68. Zhou, J., Z. Peng, J. Long, D. Sosso and B. Liu et al., 2015. Gene targeting by the TAL effector PthXo2 reveals cryptic resistance gene for bacterial blight of rice. The Plant J., 82: 632-643.
  69. Chandrasekaran, J., M. Brumin, D. Wolf, D. Leibman and C. Klap et al., 2016. Development of broad virus resistance in non-transgenic cucumber using CRISPR/Cas9 technology. Mol. Plant Pathol., 17: 1140-1153.
  70. Oliva, R., C. Ji, G. Atienza-Grande, J.C. Huguet-Tapia and A. Perez-Quintero et al., 2019. Broad-spectrum resistance to bacterial blight in rice using genome editing. Nat. Biotechnol., 37: 1344-1350.