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Abstract: This study introduces a survey of contributions to dynamic multi-objectives portfolio from finance
and operation research to the portfolio selection. This survey includes popular risk-measures and extends to
operation research models and mathematical models. In contrast to other survey, this study focuses on
highlighting the strengths and weaknesses of different models to choose the most appropriate model achieves
the optimality and easy in application by investors. To describe the latest results accompanying each model
and the similarity between them. To illustrate the modeling idea and to show the effectiveness of the proposed
approach. This paper discusses in brief the most popular mean-risk models then multi-period models from the
point view of operation research and stochastic programming. Many researchers conducted portfolio
optimization problem by offering new models. These researches success in providing mathematical and
theoretical models that enriched the finance literature but few of it satisfies the market application. This study
reviewed some of these models relating to single-period, multi-periods models, single-objective and
multi-objectives and concluded that SGMIP 1s the most effective model since 1t able to deal with real world
application considering multi-factors, multi-periods, different risk measures without affecting the computation
time which facilitate the mission of decision makers. There is a plenty of models discussing optimizing portfolio
for that the writer of this study selects the original models MV and MAY, risk measures models VaR and CVaR
and the latest models related to operation research to achieve the study objectives.
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INTRODUTION

The problem of portfolio selection is in the scarce of
resources 1t 1s not just which stocks to own but how to
distribute the investor’s wealth amongst stocks (Ravipati,
2012). In Finance, portfolio selection is famous as a
leading problem; giving that the future retumn of an asset
1s unknown when mvestment decision made therefore, the
decision making 1s under uncertainty: one can evaluate
the today decision just m future ttme once the assets
return 1s revealed (Roman and Mitra, 2009).

Modern Portfolio theory has emerged many different
models sought to provide some assistant in decision
making environment. Each model is a simplification or
simulation of reality (Pastor, 2000). By capturing the real
world features, models become more complex, therefore
many attempts provided as a simplification. In spite of the
majority of models seems worthless to financial decision
maker these models valued at least theoretically (Azmi and
Tamiz, 2010).

Researchers  approached  portfolic  selection
differently; some of them approach mean-variance of
Markowitz (1952) focusing on the trade-off between risk
and return neglecting other essential factors. Therefore,
all models aimed to maximize the return attached with
specified level of risk assuming that it will satisfy the
investors’ interests. The wide applications of the models
were neither desirable nor important (Azmi and Tamiz,
2010). Accordingly, the portfolio selection problem gets
enlarged and remains unsolved, even after extending to
mvolve other factors such as liqudity, cardmality
constraint, transaction cost, short sale and ext., which
encourage the researchers to apply either other risk
measures or simplify the mathematical models.
Mean-risk models are the common used approach in
portfolio selection practice. In these models, the return
distribution is distinguished and evaluated using two
conflict statistics measures: the expected return value and
the determined risk measure. The risk measure chosen by
portfolio manager plays a sigmficant role mn decision
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making. In portfolio selection models, a considered risk
measure has been a subject of debate. Variance was
chosen by Markowitz (1952) as a first measure used in
mean-risk models, although 1t has criticism and many
suggestions for new risk measures (Konno and Yamazaki,
1991; Ogryczak and Ruszezynski, 1999, Rockafellar and
Uryasev, 2000, 2002}, it remains the most commonly used
measure in the portfolio selection practices. Monographs
of Grinold and Kahn, Litterman and Meucci were detailed
the practical applications of the mean-variance frameworlk
(Fabozzi et al, 2010). VaR has become the industry
benchmark for risk management due to its intuitive appeal
and acceptance by bank regulators (Jorion, 2006).

Komno and Yamazaki (1991) employed absolute
Deviation as a risk measwre with retaimng some
theoretical features of MV model which is comparable to
variance and built their commonly used Mean-Absolute-
Deviation Model (MAD) (Karacabey, 2006) assuming
multivariate normal returns (Jobst ef al., 2001). Feinstein
and Thapa (1993) adjusted Karacabey (2006) portfolio and
reformulate MAD model by minimizing the securities’
number. The researcher of Worzel offered an overview
of the MAD model (Jobst et al, 2001). Chance used
Feinstein and Thapa’s model and built his own by
decreasing the number of variable and constraints kept
the same (Karacabey, 2006). The proposed model by
Karacabey (2006) distinguished between the sign of
deviations positive or negative and assumed that an
mvestor prefers a portfolio with higher upside deviations
and lower downside deviations (Karacabey, 2006). Liu and
Qn (2012) m ther study fills the gap by means of defiming
semi-absolute deviation for uncertain variables and
establish the corresponding mean semi-absolute deviation
models mn uncertain environment.

The minimax model proposed by Young (1998) as
MAD it is employed in portfolio selection researches.
Both models benefit from the drawbacks of MV model and
developed models using linear equations which making
them more appropriate for practical use. The concern
turned to left tails distributions (umfavorable outcome) to
find other risk measures for purpose of regulatory and
reporting. The most widely measure covers this purpose
1s Value-at-Risk (VaR). According to Fabozzi et al. (2010)
VAR model suffer from unfavorable theoretical properties
and encountered some criticisms as it lacks the sub
additivety and fail to reward diversification in addition to
the computation complexity (non-convex NP-hard
problem) when conducting the optimality. Because of
these difficulties, other risk measure with left tail raised
the Conditional Value at Risk (CVaR). It obtained greater
acceptance because of the attractive theoretical properties

that characterize, such as controlling the size of losses
that exceed VaR and it 1s coherent. Fabozz et al. (2010).
Optimizing CVaR for discrete random variable which
characterized by different outcomes under several
scenarios 18 leading to linear programming model with
fimte dimension (Rockafellar and Uryasev, 2002).

The concermn was extended to the mathematical
programming where the uncertainties area accompanies
with the decision making especially when it concern with
allocating the scarce of resources and across time. The
input of financial decision making for optimization
problem is usually asset prices, returns and interest rates
which are stochastic n nature. Uncertainties are measured
by either sensitivity analyses or executing scenario tests
on the parameters to observe how the optimal solutions
vary. But both approaches have obstacles made them
incomplete because they assumed one scenario of the
future and 1t occurs with certainty.

To overcome these obstacles, probabilistic methods
in addition to optimization techniques are needed The
new development from joining later techniques is called
stochastic programming. The stochastic programming
objective is to provide tools for designing and controlling
stochastic system and optimizing its performance.
Stochastic Programming (SP) captures the uncertainty in
a general framework by assigning an objective or
subjective forecast of the scenarios and their probability
distribution and formed a mathematical model. Hence, the
components of stochastic are the securities return and a
time series technique to forecast the stochastic process of
the return and estimates the model parameters. The
remaining parts of this study are organized as follows.
Section two discusses the mean-risk models while section
three discusses stochastic models, section four revealed
the conclusions and further studies.

Mean-risk models: Many models follow portfolio theory
(Markowitz, 1952) to select portfolios under risky
environments. Portfolio’s mean retum was derived from
probability distribution concerming the utility function of
the investor. The Central Tendency Theory gives the
return 1ts standard deviation which 1s relate to dispersion
measures and revealed the distribution of returns around
its mean which is considered as a risk measure. The
optimum portfolio of MV aims to minimize the variance
subject to a given expected return restrictions.

The MAD and Minimax Models are engaged in
portfolio optimization studies and take a linear structure
and can be solved using linear programming techniques.
This represent as an advantage for these models over
Mean-Variance model and its quadratic programming
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solution. Hence, the linear programming reduces the
computation time which makes them more practicable for
large-scale portfolio selection.

MATERIALS AND METHODS

The Mean-Variance (MV) model: Assume that there are
n assets in the market. Let R, be the random return rate of
the asset i, x is the amount of money allocate to asset
i,i=1, ..., n. The retumn rate of a portfolio R; is denoted by
$ry and the expected return rate of asset 1, x, 15 denoted
Bly 1,. Denoting by 1(x) = E(R(x)) = (1,;.., 1), then the
variance is V (x) = B[Rx)1(x)]’ and the standard deviation
is: 0 (x) = vV (x) = VE[Rx)-r{x)]* (Yu et al, 2003).
According to Young (1998), the MV model 15 described
as:

I\gnzle X0 (1

1=1 1=1

Subject to:
le 20 2
i=1

X =X 3

0=X=M.,i=L..,nandj=1...,N

where, p; = 1/(T-N) 3 (11, (/1) for N which is the finite
number of financial assets at time T; 1, 18 the return of
asset 1 at time t; 1; denote the average return of the asset
1; 1. 1s the return of asset j at time t; r; i the mean return of
the asset j; & X 1 is the portfolio mean return; x, and x, are
the allocations of the assets 1, 7 and M, 1s the maximum
budget share that can be mvested in the asset 1. In the
first equation, the portfolio selection of MV model
characterizes the portfolio with minimum variance, subject
to the constraint that the portfolic expected return
overcomes a given level, G (mentioned in Eq. 2), so the
total allocations to the portfolio cannot exceed the total
budget, X (Eq. 3).

From this analysis a significant result is appeared
that the risk level corresponding with the portfolio
decrease for a given rate of returr, this result stems from
the fact that says when the correlation between assets
decreases the benefits from portfolio diversification
mcreases. Therefore, the lower the correlation the higher
the risk diversification will be (Farias er ai., 2004).

Mean-Absolute Deviation (MAD) Model: Konno and
Yamazaki (1991) present Mean Absolute Deviation
(MAD) Model which is define as follows:

11(x):Eﬁ Rixi—Ei[Rixi] (4)

The risk of this model measures by absolute
deviation of the assets rate of return which forms a main
characteristic. This model gains much attention from
researchers and practitioners since its risk function | can
be transformed to parametric linear programming and the
implementation of this model to portfolio optimization can
be simply attained. The advantages of this model
concentrated on its smmplicity and computational
robustness (Yu ez al., 2003).

The research of Rudolf concludes that the
minimization of MAD revealed similar results as
Markowitz MV model at the same time it 15 equivalent to
expected utility maximization under nisk aversion when
the distribution of return exhibited normally and
multivariatly. Tn the contrast to MV, MAV model is
consistent with the second degree stochastic dominance
where the tradeoft between risk and retumn is bounded by
certain constant. Furthermore, the MAD can be extended
to frictional case easily because it is continually
converted to linear programming problem. This case 1s not
applicable for MV as it appears more difficult (Yu et af.,
2003).

The model can be converted to linear programming
problem as follows: Let M; = the initial wealth held
by the mvestor, p = the mvestor’s required rate of return,
K = maximum amount of asset i the investor wants to
investini=1, ..., n. Short selling is not allowed therefore
x=0,1=1, ..., n Denoted by:

S={x, = (X[, ses Xn)ZZIIXIZpMU’EXI: 5)
i=1 i=1

M,,0<x,2u,1= L, ...,n}

Konno’s Model is:
Minw(x) = E Y R.x,-EY [Rx]| ©
i=1 1=1

SxT, xS

The model will express as the following since the
objective function 1s not linear (Komeo and Yamazaki,
1991):

T
Minw(x)=1T Zy

SXT y,= > (5, — 5)x. t=1...T (7)
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SXT y, 2~ E (r, —g)x,t=L...T (8)

1=1,xel

Here, 1;, 15 the expected rate of ith stock during period
t. For this model no need to estimate the matrix of
variance-covariance and the constraints’ size can be
controlled through the number of periods. Since, there are
so many advantages i the MAD Model, it 18 worth
discussing and considering its extension.

Minimax model: Minimax model was applied to portfolio
selection by Young (1998). This model 1s based on game
theory, where each player (two or more) knows the goals
and has complete information about it. The rational
behavior of each payer leads to assure that the player
aims to either maximize his expected minimum retum
(Maximin criterion) or mimmize his maximum expected
losses (Minimax criterion) through the solution of each
player situation. This model is suitable for solving one
agent decision-making process under risky environment
on contrary to hus nature. The formula of Mimmax model
that applied to portfolio selection by Young (1998) is
described as follows: let N = a finite number of financial
assets, T = a time horizon:

n
R.= Zrixi
i

n
RPt = leI;t
1=1

M, =minRy, )]
Where:
1, = Dencte the return of the money invested in asset i
at time t

Ry = The expected portfolio retrun
R, = The portfolic return at time t
M, = The portfolic minimum return for time period

This equation 1s referred to Maximin portfolio
selection, the term Minimax will be used since it is more
often mentioned in the specialized literature for this
formulation (Farias et al, 2004). The mimimax model
attempts to mimmize the maximum expected losses or in
other words to maximize the portfolio minimum return for
time period M, for that R, portfolic expected return
exceeds a given value level, G and the total portfolio

allocation cannot exceed the total budget X. The
optimization problem for the above defimtion 1s described
as follows. Max M ; Mp, X, Subject to:

.1 (10)

The objected function 1s to maximize the minimum
portfolio return (Maximin). This means that for every time
period the minimum portfolio return M, will be smaller
than or equal to portfolio return (Eq. 2). Therefore, M,
cannot exceed the portfolio return and bounded from
upper side by the given level G while the R, = Xxr
exceeds the G, this prove the attempting of mmimeax to
maximize the minimum portfolio retum. From Young (1998)
point view this model has the logical advantages for
portfolio optimization over other model if assets price
follows normal distribution and when they are not.

Performance measures of risk: The key percentile
risk measures Value-at-Risk (VaR) and Conditional
Value-at-Risk (CVaR) are popular functions m risk
management. In academic finance literature on risk
management, there is a common problem of
choosing between VaR and CvaR. The reasons are
related to the differences in mathematical properties,
stability of statistical estimation, simplicity of optimization
procedures, acceptance by regulators, etc.

Value at risk VaR: VaR is widely used as a performance
measure considering the confidence level that
accompamnies the maximum loss. Various methodologies
was used for modeling VaR, most of them rely on linear
approximation of risk and assume the joint normal or log-
normal distribution of the underlying market parameters
(Uryasev, 2000). VaR is one of the most accepted
measures of risk at the same time is has unfavorable
characteristics (Artzner ef al, 1999) such as lack of
sub-additivity (VaR of the portfolio of two assets can be
greater than the sum of individual value at risk of these
two assets. Moreover when calculation requires scenario
VaR becomes hard to optimize. In this situation, VaR is
non-convex, non-smooth as a function of positions and
1t has a multiple local extremes.
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Reviewing the methodology by following the worle of
the researchers with Campbell et al. (2001) where they
focused on maximizing the expected return subject to
down side risk rather than standard deviation which
encompass any non-normality in the return distribution
of the financial assets. Suppose M, = mvested amount,
T = investment horizon, B when B>0 is borrowing amount,
B<0 15 lending amount, r; 15 interest rate that mvestor can
borrow or lend during T, n = number of available assets,
x, = fraction invested m risky asset 1 where Xx =1, P, 1s
the price of asset i at time t, ¢ is the confidence level.
Then:

Initial value of portfolio =M, + B = lepm

=
In t = 0 the investor must choose the value of x; and B.
Down side risk = P, {M, —M_ > VaR'| <(1-¢)
Let P, equals expected probability:
Portfolio P = P, {M,, <M, - VaR | <(1-c}

For constructing the optimal portfolio, let 1
represents expected total return:

Expected wealth from P =E, (Mm)
=(M, +B){1+1,) - B(l+1,)

P =max S, :(rp —rf)\(Mnrf 7qu)
Where:

S, = Ratio of expected risk premium of P

q, = Quantil of probability (1-¢)

Max 3_= (rp -, MM, 1; —VaREp)
(M, r-VaR ) = @, = risk faced by investor:

Max 3, = (rp -1 )\(P.:p
B=M,(VaR' -VaR,.]\¢,,

*Means alternative normality distribution

Conditional value at risk CVaR: CVaR 1s an alternative
measure of loss with attractive properties. In literatures, it
may call a mean excess loss, mean shortfall or tail VaR
interchangeably. Tt is overcome the obstacle of VaR since
it 1s sub-additive and convex (Artzner et al., 1999).

Uryasev (2000) reports that the CVaR can be optimize
using linear programming and nonsmooth optimization
algorithms which allows handling portfolios with large
number of instruments and scenarios. Many experiment
studies revealed that the minimization of CVaR manage to
reach optimal solution in terms of VaR since the
CvaR 1s always greater than or equal VaR. But
when the return-loss follow normal distribution both
measures provide same optimal investment portfolio
(Roclkafellar and Uryasev, 2000).

Other case studies revealed that optimization the risk
may do for large portfolio and large quantity of scenarios
with relatively small computation time when using CVaR
performance function and constraints. To test the
minimum CVaR with set of scenarios the following
algorithm (LP techmques) can be used. Let the density
function P(y) is not available but J of scenario y; can be
offered, j = 1, ..., I, Sampled from P(y). To price the
portfolio instruments, one can use historical observation
if available or using Monte Carlo simulation. After
replacing Fj (x, &) the terms (f(x, y;)-ct)" by variable z, the
constraint will be:

Z; Zf(x,y])fa,zj >0

]
MinotJr'UzzJ (an

i=1

xeX subject to:

z, Zf(x,y])fa, z20j=1...]

where, v is constant and equals v = (1- ) )™ and + = max
(0, 1), CVaR replaced by I (x, )<C; as a constraint, this
constraint can be approximated using Fy (x, «)<C; using
scenarios, J= 1, .., I

J
atu Yy z<C,

=1

Let (x', ¢ be the sclution of the minimization
problem, respecting the two variable optimizing CVaR,
then, Fy (x', @) = the optimal CVaR where the optimal
portfolic = x" and risk measure = ¢ = VaR if the last
constramt is active.

RESULTS AND DISCUSSION

Stochastic goal mixed integer programming: This model
consists of three programming techniques Stochastic
Programming (SP) to capture or measure the uncertainty
of the security price especially in future time, Goal
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Programming (GP) to smooth the using of multi-objectives
and mixed-integer programming to guarantee the fraction
is not allowed.

Goal programming: The general formulation of a GP
problem s as the following:

Min (o) "+ (0 )"y
SxT f(x)+y -y =z
Ax=b,xz0 v, v =20

where, x =x,, ..., X, is the vector of decision variables, p°,
0-0R™ are goal weighting parameters, f(x) = X% _, ¢; x,
i=1, ..., m are the goals associated with objective i and
¥™, veR™ are the positive and negative deviations from

goals zeR™, respectively (Stoyan and Kwon, 2011).
Stochastic goal programming: The combination between
GP and SP is as follows: Let wel) random events and y (w)

15 the second stage decision variable, then the general
Stochastic-Goal Programming (SGP) problem is:

Min (o) v+ (o) v+ () +(e) T
ST f(x)+y" v =z

Q(y)+8" -8 =z(w)

Where:

¢, geRP = Are goal weighting parameters

Q) = Elmin {q, (W) ywIW (w) = h (w)-T (W) x,
y(w)20}]v =1, ..., p are the goals associated
with the second-stage objective v

¥, ¥~ = Relaxation variables (v [ yeR ™are the
positive and negative deviations from goals
zeR™ )

0", 5eR? = The positive and negative deviations
from  second-stage  goals z(w)eR",
respectively

Stochastic goal mixed integer programming

Problem model: The formulation of SGMIP (incorporating
between three members of programming techniques)
began by defimng the decision variables related to
different assets in portfolio which are securities, bonds
and treasury bills riskless assets by maximizing the
following objective function:

L n T L n . .
rgaxZ E@lilxi +2 2 ZplU”1 zﬂt'h] +

oz 1 =1i=1 t=11=1i=1 12
Ll (12)
2, > X plcB + B’
t=11=1
Where:
x; = The fraction of the portfolio invested in security i
that is purchased in the first-stage (t = 0)
vy = The fraction of the portfolio mvested in security [

that is purchased in the second-stage (t>0)

m = Total of time period, for the simplicity T = m-1

L = Total number of scenarios where1=1,2,3, ..., L
because the model will capture the future market
uncertainty by expressing the outcomes of future
2CONOoMNIic as scenarios

@, = The unit price of security 1 at ime t = 0,1,..., m
under scenariol1=1,2, ..., L,1=1, 2, ..., n Where
x€R and v,€R, note that the security price is
known at t = 0 and there is only one scenario in
the first stage

2, = The fraction of the portfolio invested in bond j to
purchase at time t under scenario 1, hence z5;eR

h = The total of different types of bond j=1,2, ..., h
with respect to coupons and maturities embed

h', = The time to maturity for each bond j

¢ = The price of bond j at time t under scenario |

U = Bond return at maturity

¢ = Costof riskless asset

B} = Amount invested in riskless investment that

incurs small cost of ¢ percent over a specified time
period. BieR. There is only one scenario in stage

11=1 for B",
B = Initial wealth of the portfolio
F',,; = Represent the liabilities involved in the model that

require the portfolio to meet a terminal financial
obligation, F',,, = 0. Used with debt case given
FTnbg>0

The designed portfolio takes a passive investment
strategy. One of the objectives of dynamic portfolio 1s
minimizing transaction costs, which is minimizing the
number of transactions between time periods. Therefore,
w'; defines as the following:

W=y, -y, i=L2...nt=2..T,1=1...,L

Fort=1:

W=y, -xi=1,2..n1=1..L
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where, w’; = 0, w'; represents the fraction of a security
that is bought or sold between time periods. This fraction
subject to be minimized in objective function to keep the
portfolio’s cost to mimmum. Other object in this model 1s
to achieve the portfolio diversity by distributed the
portfolio elements throughout all financial sectors. The
variable Q (1, 8) determine the security 1 to which sector 1s
belongs where S 1s the total of sectors Q (1, s)eB. Let the
f; is the fraction of the portfolio that invested in sector s
at time t, since it is a fractionthen ¥°_, £ f=1t=0, ..., T
and f'€[0, 1]. In addition, {," is a first stage parameter
whereas f 13 a second stage parameter when t=0. The
form of sector exposure element will be as follows:

2?:1Q(i=s)®tﬂyti1 = flein:l@lil ylﬂ + &151

g=1.,8t=1,.."T1=1..,L

where, £, 1s the sector relaxation variable that compatibles
to £ under scenario 1 = 1, ..., L. £, assists the model to
find other £ if the feasible solution cannot be found with
the current used variable. The above constraint can be
used for variable x;instead of the variable v,

To bound the number of portfolio instruments
(securities and bonds), let g’ is number of securities i
mvested in the portfolio at time t under scenario 1, g',€B
where there is one scenario in the first stage 1 = 1 for g,
then g'; = 1, if security i is used in the portfolio at time t
under scenario 1 (i.e., if xi, ¥, =0) and 0, otherwise. Also,
the upper bound on the number of stocks to hold i the
portfolio 18 G' and in order to constraint the number of
security to hold, the cardinality constraint will be:

ooy t
g1 =0

t=0,...T,1=1

PP B srrny

L

The number of different bond to hold in portfolio
follows the same steps of securities where, g™ =1, if =0
and zero otherwise. The corresponding constraint will be:
gy =G6"t=0..,T.1=1 ..,L Where, G" is the
upper bound on the number of bonds to hold in the
portfolic g*eB. It is necessary to add portfolio
accounting constraints to the model as follows:

| n B b 00 0
B 721:1@1 X +EJ=1(p,1 7 +B

1 _ n 1 n 1.1 h 1 1-h*j
B, 7Ei:1®ilxi721:1®11Yi1+21:1UﬂZJ -

h 11 [ 0
]:l(pllzlizltlwﬂ+gB

t X IS Wb t ot h t o t=h*
B 17 21:1 @ 1¥a 21:1 @ Wat 21:1U %

b £t gt t—1
aPaZi— Z, Wy +cBy

(14)

where, T/ is the relative cost of security transaction, other
symbols are defined earlier. The last three equations
guarantee that the all wealth of the portfolio including
dividends is invested at each time stage. In subsection
4.2 GP approach added to the problem for considering the
various portfolio goals i the model.

SGMIP Model: The portfolio of this model follows the
passive investment strategy (p<l) for that performance
measure will be the first goal to ensure that the model
cannot outperform. To do so, let R as a maximum
benchmarlk the investment not allowed to outperform at
time t and under scenario 1. Index market may consider as
a benchmark only if the original mvestment in the
portfolio 18 greater than or equal the present mdex value
(Stoyan and Kwon, 2011). The value of R derived n a
separate sub-problem. It constraints the model as follows:

For first stage » @, x*, <R, + ¥, t=0,...,T,1=1...,.L

i—=
i=1

For second t;ltageE@ilHl vy SR+, t=1 .., TI=1...L

i=1

where, 20 13 a relaxation element that satisfies the GP
model, ¥ier and 1 = 1 for R" as noticed from last two
equations, the performance of the securities 1s only
constrained which permits the portfolio to invest in
bond when the investment in securities is not favorable.
This constramnt benefited from the historically mverse
relationship between securities and bonds respecting
their index values (Konno and Kobayashi, 1997). The
second portfolio goal, considered risk related to individual
stock and bond investments. Beta coefficient used to
minimize security risk. Beta defined as a measure of the
volatility or systematic risk of a security or a portfolio in
comparison to the market as a whole market index
portfolio I at time t. The following constraint added to
the model considering P accompanying with securities:

Y B’ <P ¥

where, 8" is a penalty variable for the optimal B’ The
optimal value of risk B° solved in separate sub-problem
and mimmized mn objective function by multiplying
penalty variable with penalty parameter shown in the
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object function final model page 14. The optimum value
obtained by B’ is based on market history price, since B,
15 computed using historical stock price. For time t=0
uncertainty must add to the optimal risk value by
including scenarios. Then for time t=0, the optimal
security risk B, becomes P, as shown in Eq. 27.

Although, bonds are less risky than securities they
are subject to many sources of risks namely, varability in
return rates, issuer default on his obligation and it may
call before maturity and offer less interest (callable bond).
Therefore, the quality of bond is constructed as a
numerical values from bond rating (AAA) as ugh to low
(D) according to SEC. This implies that bond quality rate
¢, must be involved in the equation as a constraint when
Oze<1. After solving sub-problem as to what done for f3,
the maximum ¢ value is produced and the constraint
becomes:

3oty e —8 =0, T I=] L L

where, 8" is a penalty variable for the optimal ¢’ value. At
higher time t=0, the future uncertainty must be used and
e, oy will be employed, hence the constraint will be as
following &7 1s a penalty variable combined with penalty
parameter which s mimimized in the objective function.
Liquidity is other element to be included and measured in
the portfolio selection model. Portfolio investment of this
study 13 dealing with many mstruments where securities
are the most hiquid one. The liquidity level varies between
investing instruments. According to number of shares,
the security that has million share or more is assumed to
be more liquid comparing with security has only thousand
shares. According to this logic the liquidity is defined for
each security and bond in the portfolio. Let E (1, t, ) 1s a
liquidity value for security i at time t under scenario 1 and
E~ (4, t, 1) 13 a Liquidity value for bond j at time t under
scenario . On the first stage at tume t = 0, there 1s only one
scenario therefore 1 is omitted. The portfolio aims to
invest in high liquid instrument for that the optimal
liquidity value E/* under each 1 13 assigned and solved.
The following constramt 1s added to the model as:

Gt Dg + Y Bt gy = A =0, T,1=1... L

where, A0 is a penalty variable combined with penalty
parameter which 13 mimnimized in the objective function.
As well in first stage there is only one scenario, therefore
1=1 is not written with respect to". After defining the
set of secunities Y = {1: i€[1, n]}, the set of bonds =: = {j:
J€[1, h]}, the set of sectors S:= {s: s¢[l, S]}, the set of
scenarios £: = {l: lg[l, L]} and the set of time periods

T:={ttE€[0; T} T : = §t: t&[1; T]} and T: = {t: t€[2;
T}, the SGMIP model with recourse becomes: the SGMIP
model with recourse:

B

Min—u,
. T L h . L&
EZEPIUHI zjlt_h] + Zzpl ¢B', +¢B’
t=1 1=l i=1 t=1 1=l
(14)
T L 1 5 T L 5
uz(zz plwd]w{ zamzzzpm}
t=1 1=1 1=1 5=1 t=1 1=1 3=1
T T L
}.L4[SU +m 2p181}+ ;.L{S” +22p151t}+
t=1 t=1 1=1
T L T L
u{l“ + ZEPIM} u{ x +22x2j
t=1 1=1 t=1 =1
(15)

SXTY. @, +Y ¢z, +B =B

=111

Yol . I bl

2. 0= @Yty Uz (16)
ho | 1 0
0,2, -7y +cB'=B.leQ

o t t—1 n t ot B t t—h*
l:1®1IY11 - 1:1gllY1l+2j=1U]lZJ '- (17)
jlquﬂ Z, - 2:‘Tt12:1+ B =BL.leQteT
3 @ x <Ry
z;gtu ya<s R+ Xt1=2f:1Q(i= s) @x (18)

= ffE;@”l L+ ses

n : t t t n 1 t
ZI:IQ(la S)®11y11 =1, 21:1@11)/11 + (19)
£ legse8teT,leQteT

>..gh <G (20)

" g <GleQteT 1)

T g <G 22

Z]:lgf SG ( )

Y g <GleqteT (23)
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3 BLgL <R+ 8 le Qe T (24)
Yo e 48 (25)
Yo, 2o -8 le Qe T (26)
noo. B, e
21:1 i, 0)g1+21:1 (. 0)g™, =" A (27

ESLﬁLt,Dgﬂ“+§aif(Lt,Dg}tzf—kgleglte'r
(28)
T oy-xi€T,1eq
Yoy, oy e Tle Qte T
x, <Cglise Y (29)
v, <Cglie Y, le QteT
2 2Cg' g je
' <Cg fjeEleQteT
X, €dieY (30)
v, sdie Tle QteT
ZUJSdeEE
z,<d jeEleQteT
B*>0RB"c R (31)
B, 20, B eRleQteT
X, 20, x,eRieT
¥y, 20,y'eRieTle QteT (32)
2 20,2 eRjeE (33)

7,20,z e RjeEleQteT
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Y'20,Y eRieTleQteT (34)
20,8 R
8,208 eR1e QteT (35)
5°>0,8"¢R
87208 TeRleQteT
A'2oAeR
A 200 eR1eQteT
geBg’ eBicY,jeE (36)
g eBg eBic Ije Bt T
£’ eR,E' R e85 " 1eQ, teT (37)
(Stoyan and Kwon, 2011). Where C 13 a large

constant and Eg. 34-37 set up the bmnary decision
variables.

CONCLUSION

This study reviews the modeling of portfolio
selection problem which are subject to risk and
uncertainty. The researchers differentiate in handling the
risk associated with the portfolio returmns. Some models
used up-side risk such as MV and MAV models which
called deviation measures, other models used down-side
risk such as VaR and CVaR as which called risk measures,
the remaming models corporate the operation research
mathematical programming such as stochastic, Goal and
integer programming. The first two types of models
assumed certainty environment while the last one dealt
with uncertamty as real world environment. The strength
and weaknesses of each model were given. As a
conclusion of this study, SGMTP Model revealed to be the
most proper model m terms of (smce it) considering
multi-objectives (multi-factors), multi-periods, different
risk measures by using goal programming and measures
the aspects of real world environment representing in
uncertanty of securities’ and portfolio’s returns using
stochastic programming. This study recommends more
empirical studies on how the models work with real world
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applications and taking the consideration of the economic
that derive the data process, especially for portfolios from
operation research.
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