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Abstract: This study devoted to problems of building robust stability of control system for dynamic objects
n a class of one-parameter structurally stable mapping. Problem of building control systems positions central
role in creation of automatic and automated control systems widely used nearly in all areas of production and
technology: engineering, textile industries, transport and other technologies, etc. This approach allowing to
fully increase potential of robust stability. Concept of building control system with increased potential of robust
stability in dynamic objects based on conclusions of Catastrophe theory where structurally stable mapping 1s
deduced. Research of robust stability of control systems based on a new approach to Lyapunov function.
Efficiency of control systems is clearly illustrated on the example of building control systems for technological
drying process of materials in textile industry. A detailed case provided to demonstrate efficiency of control
systems with greater robust stability. The results of numerical experiment prove theoretical principles. This
method shows stability of control systems. Actually, the results of creating control systems with greater
potential of robust stability allow to provide dynamic safety and operating capacity of control systems in
engineering and technologies at their imitial design and operation stages.
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INTRODUCTION

Problem of building control systems positions central
role in creation of automatic and automated control
systems widely used nearly in all areas of production and
technology: engineering, economic power industry,
electronics, chemical and biological, metallurgy and textile
mndustries, transport and robotechmnics, aviation, space
systems, high-precision military hardware and
technologies, etc.

It 18 now widely accepted that majority of real control
systems operate in varying degrees of uncertainty. Yet,
uncertainty might be attributable to lack of awareness of
initial contents in control objects and their unpredictable
change over time (during operation). That 13 why, the
problem of robust stability is the most acute in theory of
ruling and of a great practical interest. In general, 1t points
to delimitation of system’s parametric variation while its
stability endured. Obviously, these delimitations defined
by stability range of object’s undetermined parameters
and by settings of control devices.

Notable methods of building control systems of
objects with undetermined parameters mostly devoted to
examination of system’s robust stability with given
structure and linear law. These prevent from desigming

control systems with wider area of robust stability
conditioned by object’s undetermined parameters and
motion of its characteristics at greater ranges. Now a days
scientific contributions lack research and development of
control systems with wider area of robust stability.

This study devoted to actual problems of building
robust stabile control system of dynamic objects with
undetermined parameters while addressing control
system in a class of one-parameter structurally-stable
mapping, allowing to fully increase potential of
robust stability.

Concept of building control system with increased
potential of robust stability in dynamic objects based on
conclusions of catastrophe theory where structurally
stable mapping 1s deduced.

Literature review: The theory of robust control began in
the late 1970s and early 1980s and soon developed a
number of techmques for dealing with bounded system
uncertainty. The Robust stability is closely linked to the
fundamental studies (Barbashin, 1967; Malkin, 1966;
Siljak, 1989, Polyak, 2010) and today we see many works
n this field (Siljak, 1989, Polyak and Scherbakov, 2002a, b,
Polyak, 2010, Gilmore, 1981; Voronova and Matrosova,
1987, Pupkov and Egugov, 2004, Gantmacher, 2002; Strejc,
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1985). However, many of them address either linear
systems or nonlinear systems with specific constraints.
Successful results were reported when Lyapunov theory
(Polyak and Scherbakov, 2002a,b; Polyalk, 2010; Gilmore,
1981; Voronova and Matrosova, 1987) was employed to
achieve robust stability of control systems with uncertain
parameters. In particular (Gilmore, 1981; Voronova and
Matrosova, 1987, Pupkov and Egugov, 2004; Gantmacher,
2002) presents both analysis and synthesis steps of
the process.

The robustness is assumed as an ability to maintain
system availability in a condition of parametric and
nonparametric  indeterminateness describing control
objects. The most important idea in the study of robust
stability is to specify constraints for changes in control
system parameters that preserve stability. Studies (Siljak,
1989; Polyak and Scherbakov, 2002a, b), etc., dedicated to
study robust stability of control systems.

Nevertheless, many of them focused on studies of
robust stability of linear continuous and discrete
control  systems  specifically of  characteristic
polynomial, frequency characteristics and Lyapunov
matrix equation.

The results reported by Abitova et al (2012a, b),
Yermekbayeva (2013), Yermekbayeva et al (2014),
Beisanbi and Yermekbayeva (2013), Beisenbi and
Abdrakhmanova (2013), Abdrakhmanova and Beisenbi
(2014), Beisenbi and Uskenbayeva (2014), Beisenbi and
Yermekbayeva (2014), Beisenbi and Mukataev (2014) and
Beisenbi et al. (2014) are of particular interest where
increased robustness based on catastrophe theory lead to
structurally stable systems.

Special attention is given to dynamic systems where
processes of self-organizing of Physical-Chemical and
Biological systems addressed (Yermekbayeva, 2013;
Yermekbayeva et al., 2014). Models of these systems
represented in a form of structurally stable mapping from
catastrophe theory and examined as multi-purpose
arithmetic model of evolution and self-assembly in a
wildlife. For this reason, it is of a particular interest in
conditions of uncertainty of object’s control parameters
with generation of determined chaos. Building of
automated control system in a class of structurally stable
mapping with arithmetic models corresponding to complex
system behavior specifically resultmg m multiply
consequent and stable solutions.

MATERIALS AND METHODS

Research model: Suppose control system 1s given by
state equation:

X =Ax+Bu, y=cx,xeR", yeR (D
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Where:
01 0
00 1
A=l
0 0 0 1
a, 4, 8, -4,
0 0 00
0 0 .00
B=|0 0 0 0 0 c=|l, 0, ., 0 0

L L., 1 , 1

Let us consider set of equations with input stimulus
u (t)eR". It appears from object’s controllability that
number of null item at the end line of the matrix B
corresponds to non-controlled coordinate.

In this case, it 1s assumed that all state variables of
Eq. 1 are controlled and the only output coordinate 1s x,.
This 1mplies that controlled object with matrix A by
inducing to the control path of a regulator with control
law in a form of one-parameter structurally-stable mapping
of (Polyak, 2010):

u, :—Xf+kixi, i=1..n (2)

Could be reclassified to any pre-designed position.
Let us show that Eq. 1 and 2 allows to define stability
areas of control system at controlled variables and
provides limitary wide area of stability at undefined
parameters. Equation 1 by taking in account (Eq. 2) could
be presented in the expanded form of:

Xm dXZ
I Xz: I Xj:
dt dt
(3
e ok -a) xma, o
k,—a, V%, x+{k —a)x,
Y=%
Let us consider steady status of the equation:
2s =\
3 Ve
“
X, =0
7X135+(k1 o E"n) X'ls B ng +
(k,—a,_ )X, —..,—x +k, —a)x, =0
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From Eq. 4 implies steady-state of Eq. 3:
=X, =..%,.=0 )

Other steady-states of the (Eq. 3) shall be defined by
solution of the equation:

—~x’+(k-a_ ,)=0, i=1...n (6)

If negative ki-a,,.; (k-a,,,<0) 1 =1, 2, ..., n, this
equation has 1 (imaginary) solution that does not
correspond to any physically feasible situation. At
k-a,.,>0,1=1, 2, ... n, Eq. 6 allows following steady
states:

xl =4k —a

18 1 n—1+l

Xi:is = 7N|k1 7an—1+1 >st =0 (7)

i#ji=L..,nj=1..,n

These states (Eq. 7) of the equation merge with
(Eq. 5) at control parameter and bifurcate from it at
k1_8'11-1-*-1>0'

RESULTS

Data analysis

To examine robust stability of steady-state conditions of
(Eq. 5 and 7), let us consider fundamental principle of
Lyapunov function: For asymptotical stability of
equilibrium states and Lyapunov stability, it 1s necessary
and sufficient (if and only 1if) a positive defimte
Lyapunov function V (x) to exist so that it’s total
derivative to time V (x) in solution of state differential
(Eq. 3) is a negative definite function, ie.,:

Vo= Y®dx
ox dt

Herein, total derivative in time of Lyapunov function
with regard to state equation 1s geometrically defined as
a scalar product of gradient vector of Lyapunov function
(OV (x)/igx)on velocity vector (dx/dt). Besides, gradient
vector of Lyapunov function is sidelong to ultimate
growth of the function, 1.e. from origin of coordinates to
ultimate growth of Lyapunov function. It shall be also
noted that while examining state stability (Voronova and
Matrosova, 1987, Pupkov and Hgugov, 2004) the
origin of coordinates corresponds to defined motion or
steady-state system. Equation of steady-state (Eq. 1 or 3)
is to be always written in depart of from steady-state
condition ¥, (x = Ax = X-X).

Thus, Eq. 1 or 3, reflects the rate of change of
deflection vector x (t) and we could assume that vector of
velocity deflation leads to the origin of coordinates in
state stability. Let us consider Lyapunov function V (x)
given by vector-function (Voronova and Matrosova,
1987, Pupkov and Egugov, 2004, Gantmacher, 2002,
Streje, 1985) (V, (x), V, (%), ..., V, (x)) and from geometric
interpretation let us consider antigradients from
components of Lyapunov function (-0V, (x)/dx,1=1,2, ...,
n) equal to components of velocity vector dx/dt, i.e.;:

i _VE L NE |,V
dt %, ax, ax, (8)

i=1,2,...n

gy

Tt follows from Eq. 8 that:

dt ox,

dx, V00 dx, BV,00

N ’

dx, V00

dt ax, "
Cdx, 9V, (x) N av“(x)+,...,+ v, (%) _
dt Ox, o%, %,

=—x)+k, —a % -%x+(k,-a,_)x,—

X0+ (k8K

Then, total derivatives in time from components of
Lyapunov vector-function for steady-state condition
(Eq. 5) equal to:

e
dt ’
Ve
dt ’
dv_ x)
T e ®)
dv (x)
dt
-x; +(k —a,)x, -
=— 7X§ +ik, —a, )%~
-x, +(k, —a,)x,

From Eq. 9, it follows that total derivatives in time
from components of Lyapunov vector-function will
always be a negative function. Also, total derivatives in
time of Lyapunov function represented by sum of
(V(x)=V,(x) + V,(x) +..+ V,(x)) shall be obtained as:
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dVix) S S
dt

2
Ky e X

5 2

=+ (k —a, )x —

= +{k, —a, )%~

—x:+(k, —a)x,

n

Lyapunov  function could be formed
vector-function (Polyak, 2010) with components:

1
Vl(x):(O,—Exi,O,...,O)

1
Vy(x) = (0,0,—EX§,---,0)

vV (x)= (0,0,0,...,—%xi)

L1

1
—x! +E(an -k)xi,
1, 1 p
—X,+— -k

Vn (X) — 4 XZ 2 (an—l Z)XZ’

.

1, 1 ,
—x +—(a, —k_)x
4(12(1 n)n

Herein components of Lyapunov vector-function
(V, 1-1, 2, ..., n) formed by components of gradient vector:

v, (x) 9 aV,(x) -
X%, Todx, v
AAES P\ ACS R
. "
AACTNEACER
0%, T oox, ’
v, (x) _ IV, (x) 9
ox, T,

v, (x) 0 v, (x) 0
Ox, ooxy ’
av,_ (x) 0 av _ (x) -

ax, To9x, "
m:xf +(a, —k)x,
ox,
m = X; Ha, , —k,)x,,
o%,
P 0 a, k),
%,
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Lyapunov function in a scalar form is represented by:

1 1
Vi) = ZX? +E(an—k12 I+

1 1
Exg JrE(aerk2 x4+

(1)

1 1
ZX4 +E(al ~k, —1)x;

Condition for stability of steady state (Eq. 5) of the
(Eq. 3) shall be achieved with negative definiteness of the

(Eq. 10) conditioned by positive definiteness of Lyapunov
(Eq. 11) as:

a—k =0
a, —k,-1>0 12)
a-k,-1>0

Or mequality (Eq. 12) could be re-stated as:

—eoctk, < a,
—oocck <a, -1

As a result, steady state Eq. 5 of the Eq. 3 will be
asymptotically stable if conditions of (Eq. 12) met.

Let us examine stability of steady state (Eq. 7) and for the
(Eq. 3) in deviation with respect to steady-state (Eq. 7): To
generalize the reasoning, if we assume that all equation
parameters are undetermined and flow simultaneously
from negative domain of parameters to positive, we shall
result in:

X =X,
X, =X,
anl = Xn

(13)

Xn = 7X13 + z(an - k1 )Xl -
X+ 2a, , —k,x,

*Xi +2{a, —k_Ix,
Y=

Determine compoenents of gradient vector from
component of Lyapunov vector-function:

IV, (x) 0 IV, (x) __
ox, ’ 0x, v

N,
% 9%

3 n
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v, (x) 0 v, (x) _

0,
ax, 0%,
o ok
M) _ a0, -k,
. (a4
a\'{n (X) = X_é + 2(an_1*k2)X2
X,
v,
CAACS SRV
0x,
Vv, (x
%:Xi—z(al_kn)xn

Total derivative in time of Lyapunov vector-function
1s prescribed by:

Vx)=—x2—x—., % —
[xf —2(a, fkl) X+ — (15)
2a,_, —k, x4 —2a kx|

It 15 obvious from (Eq. 15) that sufficient condition for
asymptotic stability of Lyapunov theorem will be always
fulfilled, i.e., total derivatives of Lyapunov vector-
function shall be a sign-negative function. By gradient
let us build Lyapunov function mn a scalar form
(Pupkov and Egugov, 2004):

Vx) =V (xH+V,+,.. .,V (x) =

4 4

:%xl Jr%(an —kx + ixz +
1 1
E(an—sz 7E)X§ + (16)

1 1
ZX;‘+(21“7271<3 75)X§+,...,+

1, 1.,
—x +(a,—k ——)x
4 (1 il 2)n

From Eq. 16 equilibrium state of Eq. 7 is a necessary
condition of asymptomatic stability, i.e., condition of
positive  definiteness of Lyapunov function for
equilibrium state of Eq. 7 that only exists at:

k

4, ,>0,1=1..,n

If true:

1
a-k >0 a_,-k, ) >0,

1 1
a, —k,-=—>0,.,a-k-=>0
2

Thus, it is noted that state Eq. 1 after introducing
control law in a form of one-parameter structurally-stable
mapping, attains qualities of robust stability in wider
ranges of undefined motion of the parameter a, i =1, ...,
Tt appears that state x,, = %, = X, 18 global
asymptotically stable if conditions of (Eq. 12) met and
unstable if conditions fail, state (Eq. 7) asymptotically

1n.

stable. If k = 0, then bifurcation occurs with new
stable bifurcations, 1e., arises new opportumty to
build stable control system at any changes of

undetermined parameters.

Considering all, a new method for building robust
stable control system i a class of one-parameter
structurally-stable mapping (Beisanbi and Yermekbayeva,
2013; Beisenbi and Yermekbayeva, 2014) of dynamic
objects with undetermined parameters was presented, this
will allow to fully increase the potential of robust stability.

DISCUSSION

The Examination of control system stability of drying
process, built in a class of structurally stable mapping by
Lyapunov function: Efficiency of control systems with
increased potential of robust stability 1s clearly illustrated
on the example of building control systems in a form of
structurally-stable  mapping for
technological drying process of materials in textile
industry. Let us examine control system stability of diying
process, build in a class of structurally stable mapping by
Lyapunov function (Voronova and Matrosova, 1987,
Pupkov and Egugov, 2004). Equation ACS shall be
presented in a problem state as (Eq. 1) where:

one-parameter

o 1 0
A=jo 0o 1 |,
0 - -TT
0
B=| 0 | u=kx,c=[1 0 0
kElkl

In detailed view of state equation:

dx, _
at

dx, _ X, a7
dt

dx,

I = —kukle+kuklkpX1—T1X2—TUTlx

2

3

Let us determine steady state of the (Eq. 17):
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Xls =
X,, =0 (18)
Xy = 7knk1(x?s7kp X - Tx, ~TTx, =0
From Eq. 18, we identify steady state of Eq. 17:
X,=X,=x_ =0 (19

Other steady states of Eq. 17 shall be defined by
solution of the equation:

2
-x; +k, =0,x,, =0, x,, =0

If k, (k,<0) is negative, this equation has i (imaginary)
solution. If k>0, the following steady conditions are
allowed in the equation:

Xi= k,, %;,=%,,=0 (20)

=0 2

les - kp 2 Xy = Xy,

Conditions Eq. 20 and 21 of Eq. 17 merge with Eq. 19
if parameter k, = O and bifurcate if. To examine robust
stability of steady states (Eg. 19-21), let us use
fundamental principles of Lyapunov function, we shell
then define components of gradient-vector:

oV (%), %,,%5) -0 OV (%, %,,X,) _
ax ’ ax,

OV, (XXX,
a}QE

IV, (X, X,, X, —0 BVZ(xl,xz,xj):
ox, ’ Ix

OV, (X, %,.%,)

ax, -
OV, (X,,%,.%,)
a:’(1
oV, (x,,X,,X
EASERA 3):T1X2
0%,

X,

=0

0

>

2

=%/ =kl ke x,,

IV, (%, %5, X5)

X3

=T,Tx;

Total derivatives in time of components from
Lyapunov vector-function shall be:

v

e W L dVi)
dt ¥

dt ot
KK k)~ T~ T
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Or total derivatives in time from scalar Lyapunov
function could be stated as:

dvix) _

aw —kgk(x} —k x,)* -

(22)
(T + D2 — (i T +)

Total derivative m time of Lyapunov function 1s a
We shall then
components of Lyapunov function as:

sign-negative  function. achieve

1 1
Vi(x)= *EXE, V,(x) = *EX;'\/@(X) =
1 s 1 2, 1 2
- anklxl - Ekﬂklkpxl +ETDT1X3

Lyapunov function in scalar form is represented as:

1 1 1
Vix) = Zkuklx;'f E1<01<11<pr + (LT =D x2 (23

Stability conditions of zero steady state of Eq. 19
identified with negative definiteness of Eq. 22 from a
condittion of positive defimiteness of Eq. 23 lgk>0,
kgl ke =0, T1-1=0, T,T,-1>0, when k>0, k>0, T,>0, T;>0,
this condition shall be feasible if k<0, so that zero
equilibrium  will be stable at negative values of
coefficient k<0 while other steady stable conditions
do not exist.

The study stability of steady condition (Eq. 20): Let us
examine stability of steady condition (Eq. 20) for such
equation of drying process (Eq. 17) m deviation with
respect to steady state (Eq. 20) we provide the following
(Beisenbi and Yermekbayeva, 2014; Beisenbi
Mukataev, 2014; Beisenbi et al., 2014):

and

dx, _
dt
dx, _
a7
dx
- kg 3k fl, -
2kok kox, - Tx, =T Tx,

2z

We shall identify components of gradient vector of
Lyapunov vector-function components:
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OV, (XXX, 0 OV, (XXX,

a}(l i aX‘Z
_ IV, (X, X5, X,5) 0
=-x,, =0

ox,

oV, (X,,%,,X;) 0 OV, (%, %, %,)

ox, ’ dx,
:Ojavz(xbxbxa) = —x,;

o

aVE(Xl’XZ’XE _

ox

1

el + 3l ke, 7+ 2k ke x

OV, (%,,%,.%,)
ox

12

=Tx,
2

Total derivative in time of Lyapunov vector-function
we 1dentify as:

OV (x) dx _
ox dt
3k, fk, X+ 2Kk kX, P - TG - T TG

Vix) = —x; —x; —(kgkx/ +

(24)

Full derivative Eq. 24 from Lyapunov vector-function
is a sign-negative function. By gradient the following
Lyapunov function 1s formed:

V() =V,00+ V,(x)+ V,(x) = féxi 7%)(? +

ke x*+

1B

gk, gk fle ] + ke
(25)

1 1

ETIX§+ETDTIX§ = kukle+k01<1\/1§xl3 +

1 1
kkk x +E (T -Dx’ +ECI‘DT1 -Dx

As per Moro’s lemma Eq. 25 could be replaced by
quadric form:

1 1
Ve =Kok kx+ (T -Dxi+ (LT -Dxg (26)

The condition of positive definiteness of Eq. 25 or 26
shall be reached by:

kkk >0, T,~1>0, T,T,~ 1> 0
k, >0, k>0, k, 20, T,>0 T,>0

27

From Eq. 27, we conclude that steady state of Eq. 20
shall be asymptotically stable. The overall the transition
process and phase portrait of the study stability of steady
condition Eq. 20.
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The stability of steady condition (Eq. 21):

dx;

dt
2kl kx -Tx, —TTx,

=—kk,x? +3kk, kpxl2 -

In this case, equation of deviation state represented
as following Eq. 17. Let us determine gradient vector of
components of Lyapunov vector-function:

IV, (%), X,,X;) -0 OV (%, %,,X;) S

73

ox, 0x,
IV, (%,%,.%,) o
Ix, ’
OV, (%,,%,,X%,) 0 OV, (%,,%,,X%,) 0
ox, ’ ox, ’
OV, (X, %,,%;) o
x, 0
3
78\[3 (Xal;-xz,xa) = kuklxii -
1
3k, fk, %0 2k kK x
IV, (X,,X,.X,) T, IV, (x,,X,,X, CTTx,
aX'Z Xl
Total derivative in time from Lyapunov
vector-function is reached by:
Ve e

Vix)=

e - oo ekl g

3k, k6 o+ 2kk ko) - TiXE - TETV

Total derivative Eq. 28 of Lyapunov vector-function
is a sign-negative function. By gradient the following
Lyapunov function 1s formed:

Vix) = V,(x)+ V,(x) + V,(x) = kk x} —
1 1
kk, ‘/ k, x; + kkkx + E(T1 —Dxi+ E(TUT1 -Dx

(29)
As per Morros lemma (Eq. 29) could be replaced by
quadric form:

Vix)=kkkx + %(T1 ~Dxl+ %(TnTl (30
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k-values

15 20

ACS

10

Fig. 1: The transient-response cwve in ACS with
proportional control laws for parameters: k; = 0.8;
k=2 =2,T,=-10, T, =2

k-values

002 004

0.00
-0.02
T-vaus

Fig. 2: The phase portrait of ACS with proportional
control laws for parameters: k, =08k, =2, k, = 2;
T,=10,T,=2

The condition of positive defimiteness of Eq. 29 or 30
shall be reached by:

kkk,>0,T,

k, >0k, >0k >0,T,>0,T;>0

-1=0, TT —1=0

> 70

(31)

From Eq. 31, we conclude that steady state of Eq. 31
shall be asymptotically stable if conditions of Eq. 31 met.
The overall the transition process and phase portrait of
the study stability of steady condition (Eq. 21).

Case study: Conditions of robust stability have discussed
in owr paper can be demonstrated by simulation
experiments in case study. Figure 1 and 2 shows
trajectories (phase portrait and transient-response curve
m ACS) of the state vanables of the system with a
proportional gain controller. But Fig. 3 and 4 shown with
rebust stability with conditions when parameter k,
assumes both with conditions positive and negative
values of the system. Figure 3-6 shows phase portrait and
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8 o6
©

%

10

3: The transient-response curve in ACS with greater
potential of robust stability in drying process for
parametres: k, = 1, k, =21k, =2, T, =5, T, =2

Fig.

0.00 oo ,
Acs 0%

i "0.02 004
0.00
0107504 -002 %0,

Fig. 4: The phase portrait of ACS with greater potential of
robust stability in drying process for parametres:
k=1 k, =42k, =2,T, =10, T;=2

1.2
1.0

0.8

0.6
0.4

k-values

0.2

0.0

0.2 i | i
0

Fig. 5: The transient-response curve in ACS with greater
potential of robust stability in drying process for
parameters: k,=1; k, =+6,k, =2, T, =5, T, =2

curve in  ACS with greater

potential of m drymg process.

Transient-response curve for state wvariables ACS

with greater potential of robust stability m drying

process. Figure 5 and 6 shown with

stability with conditions, when parameter k, will

transient-response

robust  stability

robust
grow. The experimental results of the proposed
robust control system and comparing the satisfied
results obtained.
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k-values

. 20_040.C6
: : 0.00%
-0.05 —0.C 4-0.C2
-010=0.06 = T-vaus

Fig. 6: The Phase portrait of ACS with greater potential of
robust stability in drying process for parametres:

ky=lik, =+, =2,T, =5 T, =2
CONCLUSION

Now a days significance of building control systems
with greater potential of robust stability is determined by
contemporary demands of science and technology. Case
studies related to formation and design of control
processes m technology, economics, biology and other
spheres 1n  conditions of essential parametric
mndefimteness of greater potential of robust stability is
one of the key factors that guarantees prevention from
chaotic motion and guarantees applicability of models and
operational reliability of designed control systems. De
facto, the results of creating control systems with greater
potential of robust stability allow to provide dynamic
safety and operating capacity of control systems in
engineering and technologies at their initial design and
operation stages.

The study justifies building control systems with
greater potential of robust stability for linear objects with
undetermined parameters of choicely control law in a class
of one-parameter structurally-stable mapping. Tt was
demonstrated that system has asymptotically stable
steady state at negative and positive domains of variation
of control objects” undetermined parameters.

While undetermined parameters of control objects
pass through zero, a bifurcation occurs and new stable
bifurcations arise. These steady states do not exist
simultaneously and the opportunity to build a system
which is stable at any variations of undetermined
parameters, occurs.

Use of one-parameter structurally-stable mapping
though building control systems for technological
process of drying shows that transient system at any
value of undetermined parameter not only stabilizes but
also has no limits on variation of undetermined parameters
of drying process.

The results of numerical experiment prove theoretical
principles. This method shows stability of centrol
systems at negative and positive domams of
undetermined parameters of system.
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