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Abstract: Spacetime geometric algebra is a unified
mathematical language for physics. The geometric
representation of spacetime and the use of four-vectors
are vital to the successful findings of three-dimensional,
four-dimensional non-Euclidean geometry in Lorentz and
Galilean transformations. Thus, the usual opinion that
there is a sole set of events presents now in a
three-dimensional or four-dimensional spacetime cannot
be continual. The geometric representations discussed in
this study include the following: Minkowski’s path to
spacetime Galilean transformation as a geometrical
representation of motion Lorentz transformation as a
geometrical representation of inertial frames and
worldline of a particle. The expansion of the special
relativity theory using four-vectors space-time
four-vectors.

INTRODUCTION

In Physics, spacetime is any mathematical model
which fuses the three dimensions of space and the one
dimension of time into a single four dimensional
manifold. Spacetime diagrams can be used to visualize
relativistic effects such as why different observers
perceive differently where and when events occur. The
idea of spacetime with an opinion concerning accepting
its instant foundations and modification was suggested
and articulated by Harmann Minkowski in 1908. To
narrate the stages of Minkowski’s discovery, we  begin
with an account of Poincaré’s principle of gravitation,
where Minkowski initiates some of the origins of
space-time. The Poincaré’s geometric explanation of the
Lorentz transformation is scrutinized, along with
Minkowski's details for not following a four-dimensional

or three-dimensional vector calculus. The description of
the effects of special relativity is carried out within the
four-dimensional Minkowski space R(3, 1). We
differentiate the Minkowski idea from the recent ideas as
discovered from our findings that the Euclidean geometry
of a four-dimensional non-Euclidean manifold is
incredible in the structure of spacetime from a
mathematical viewpoint. The impression of a
four-velocity vector, i.e., w1-w4 can be expressed as a
hyperbolic velocity space that is always a point on the
surface of a four-dimensional space in Lorentz and
Galilean Transformations. An expression of two events
can be used to explain the phenomenon behind the
four-vector of three or four-dimensional displacement in
spacetime[1-4]. However, strangely enough an important
pedagogical work still remains to be done if one retains
from that adventure one of its most striking aspects,
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namely the existence of a united geometrical
representation of space and time, called space time and
the logical necessity of its introduction on the basis of the
special properties of the velocity of light. In fact, we think
it worthwhile and possible to communicate this
geometrical representation not only to learned scientists,
but also to any scientifically-curious and/or
philosophically-minded student. One can then say that as
a geometry of description, Euclidean geometry appears as
the oldest manifestation of the spirit of mathematical
physics. As it may be already familiar to pupils at the
terminal level of high-school, this implies a relationship
between algebra and geometry whose interest is two-fold.
On the one-hand, the properties of geometrical curves can
be equivalently represented by algebraic equations
relating the coordinates of their points. This representation
is unique, once the choice of a system of coordinates has
been specified. For example, in orthogonal coordinates,
the equation of the unit circle x2+y2-1 = 0 makes use of
the standard Pythagoras theorem for characterizing the
points M = (x, y) of the curve[5-7]. The geometrical
constructions which may be associated with the pictorial
representation of a physical phenomenon in a plane or in
a three-dimensional space equipped with coordinates
pertain to what we shall call a geometry of representation.

Minkowski’s path to spacetime: To begin with
Minkowski discussed neither spacetime, manifolds or
non-Euclidean geometry but vectors. Borrowing
Poincaré’s de nitions of radius and force density andk

adding (like Marcolongo before him) expressions for
four-current density e and four-potential, ψ Minkowski
expressed Maxwell’s vacuum equations in the compact
form:

(1) - j 1,2,3,4,5j j  k

where is the Dalembertian operator. According tojk

Minkowski, no one had comprehended before that the
equations of electrodynamics could be written so
concisely, “not even Poincaré’’. Seemingly, Minkowski
had not observed Marcolongo’s paper, mentioned above.
The next mathematical object that Minkowski introduced
was a real step forward and soon recognized as such by
physicists. This is what Minkowski called a “Traktor” a
six-component object later called a “six-vector”, and more
newly, an antisymmetric rank-2 tensor. Minkowski de ned
the Traktor’s six mechanisms through his four-vector
potential using a two-index notation: ψik = Mψk/Mxj,-Mψj/Mxk

nothing the antisymmetry relation ψkj = -ψik and zeros
along the diagonal ψjj= 0 such that the components ψ14,
ψ24, ψ34, ψ23, ψ31, ψ12 match the field quantities -iEx, iEy,
iEz, iEx Bx, By, Bz. To express the source equations,
Minkowski introduced a “polarisationstrakor”, p:

(2)1 2

1j 2 j 3j 4 j

3 4

p p p p
+ + + j jx x x x

   
  

   
k

  
Where σ is the four-current density for the matter.
Minkowski is yet to reveal the sense in which the world
is a “four-dimensional non-Euclidean manifold” [8]. His
argument continued as follows. The tip of a
four-dimensional velocity vector w1, w2, w3, w4 is
constantly a point on the surface:

(3)2 2 2 2
1 2 3 4w +w +w +w -1

Or if we prefer:

(4)2 2 2 2t -x -y -z 1

and represents both the four-dimensional vector from the
origin to this point and null velocity or rest, being a
genuine vector of this sort. Non-Euclidean geometry, of
which we spoke earlier in an inexact fashion, now unfolds
for these velocity vectors.

These two surfaces, a pseudo-hypersphere of the unit
imaginary radius in Eq. 3 and its real counterpart, the
two-sheeted unit hyperboloid in Eq. 4, give rise to
well-known models of hyperbolic space, propagated by
Helmholtz in the late nineteenth century. The upper sheet
(t>0) of the unit hyperboloid in Eq. 4 models hyperbolic
geometry. The conjugate diameters of the hyperboloid in
Eq. 4 give rise to a geometric image of the Lorentz
transformation. Any point in Eq. 4 can be considered to
be at rest, i.e., it may be taken to lie on a t-diameter as
shown in Fig. 1. This change of axes links to an
orthogonal transformation of the time and space
coordinates  which  is  a   Lorentz   transformation 
(letting c =1). Although, Minkowski did not spell out his
geometric explanation, he possibly documented that a
displacement on the hypersurface in Eq. 4 corresponds to
a rotation ψ about the origin such that frame velocity ν is
designated by a hyperbolic function, ν = tanhψ. Though,
we did not yet realize that hypersurfaces represent the set
of events occurring at the coordinate time t’ = 1 of all
inertial observers, the worldlines of whom pass via. the
basis of coordinates (with a common origin of time).
According to Eq. 4, this time is imaginary, a fact which
may have obscured the latter interpretation. When we de
ned four-velocity, we took over the mechanisms of the
normal velocity vector w for the spatial part of
four-velocity and added an imaginary fourth component,

. This resulted  in  four  components  of 2i 1-i
four-velocity,  w1,  w2, w3, w4:

(5)2
x y zw ,w ,w ,i 1-
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x

Fig. 1:  A reform of Minkowski’s Nov. 5th, 1907
demonstration of relativistic velocity space, with a
duo of sequential axes, one 3-D axis, a unit
hyperbola and its asymptotes[8]

Since,  the components of Minkowski’s quadruplet
do not transform like the coordinates of his vector space 
x1, x2, x3, x4 they lack what he knew to be a four-vector
property. Minkowski’s error in defining four-velocity
indicates that we did not yet hold the concept of
four-velocity as a four-vector tangent to the worldline of
a particle. If we grant ourselves the latter notion, then we
can let the square of the differential parameter dτ of a
given worldline be such that the 2 2 2 3 2

1 2 3 4d - dx +dx +dx +dx 
4-velocity wμ may be defined as the first derivative with
respect to . Sometime after ,w dx /d 1,2,3,4,....,m     
Minkowski spoke to the Gttingen Mathematical Society,
he repaired his de nition of four-velocity and possibly in
assembly with this, he came up with the constitutive
elements of his concept of spacetime. In precise, he
expressed the idea of proper time as the parameter of a
hyperlink in spacetime, the light-hypercone structure of
spacetime and the spacetime equations of motion of a
substantial particle[8]. On 5 April 1908, he expressed his
new theory in a sixty-page memoir published in the
Gttinger Nachrichten. His memoir, entitled “The basic
equations for electromagnetic processes in moving
bodies” made for challenging reading. It was packed with
new notation, terminology and calculation rules, it made
scant reference to the scientific literature and offered no 
gures or diagrams[9]. Along the same lines, Minkowski
rephrased velocity, denoted q in relations to the tangent of
an imaginary angle iψ:

(6)q -itani 

where  q<1.  From  his  earlier  geometric  explanation  of
hyperbolic  velocity  space,  Minkowski  kept  the  idea 
that  every   rotation   of  a  t-diameter  agrees  to  a
Lorentz  transformation  which  he  now  stated  in terms
of iψ:

(4)
'

3 3 41 1

2 2 4 3 4

3

,

', cos i + sin i

' ' - sin i + cos i

x x x x x x

x x x x x

   

   



Minkowski was certainly conscious of the linking
between the arrangement of Lorentz transformations and
velocity composition, but he did not reference it.
Minkowski neither stated Einstein’s law of velocity
addition nor stated it mathematically. While Minkowski
made no demand in “The basic equations” to the
hyperbolic geometry of velocity vectors, he reserved the
hypersurface in Eq. 4 on which it was created and
provided a new explanation of its physical signi cance.
This clarification represents an imperative sign to
consider how Minkowski revealed the worldline structure
of spacetime. The supplement to “The basic equations”
rehearses the argument according to which one may
choose any point in Eq. 4 such that the line from this point
to the origin forms a new time axis and agrees to a
Lorentz transformation. He additional defined a
“spacetime line” to be the entirety of spacetime points
equivalent  to  any  particular  point  of  matter for
all-time t[10]. With respect to the new idea of the spacetime
line, we noted that its direction is determined at every
spacetime point. Here we introduced the concept of
“proper time” (Eigenzeit), τ, expressing the increase of
coordinate time dl for a point of matter with respect to dτ:

(8)
2 2 2 2 2 4

4

dx
d dt -dx -dy -dz dt 1-l

w
    

Where iν2 is the square of ordinary velocity 
 which silently corrects the2

4 4dx idtand w i/ 1-i  
defective definition of this fourth component of
four-velocity in Eq. 5 delivered by Minkowski in his
November, 5 lecture. The de nition of four-velocity was
properly related by Minkowski to the hyperbolic space of
velocity vectors in “The basic equations” and thereby to
the light cone structure of spacetime. Sometime before
Minkowski came to study the Lorentz transformation in
intense, both Einstein and Poincaré understood light
waves in space to be the only physical objects resistant to
Lorentz contraction. Minkowski observed that when light
rays are measured as worldlines, they divide spacetime
into three sections, equivalent to the spacetime section
inside a future-directed (t>0) hypercone (“Nachkegel”),
the region inside a past-directed (t<0) hypercone
(“Vorkegel”) and the region outside any such hypercone
pair. The propagation in space and time of a spherical
light wave is defined by a hypercone, or what Minkowski
called a light cone (“Lichtkegel”). One instant
significance for Minkowski of the light cone structure of
spacetime troubled the relativity of simultaneity.
Minkowski presented only the Newtonian version of the
law of gravitation in “The basic equations”, involving the 
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Fig. 2: The light cone structure of spacetime[11]

Fig. 3: MN represents the world line of particle, P

states of two massive particles in arbitrary motion and
finding an appearance for the spacelike component of the
four-force of gravitation. Although, his derivation
involved a new spacetime geometry, Minkowski did not
establish graphically in his new law, a conclusion that led
some physicists to describe his theory as incoherent[12].
According to Minkowski, nevertheless his
accomplishment was a formal one in as much as Poincaré
had expressed his concept of gravitation by proceeding in
what he defined as a “completely difierent way”(Fig. 2).

Galilean transformation as a geometrical
representation of motion: The motion of a particle can
often be signified graphically. Since, the particle is in
motion,  the  position  coordinates  in  three  dimensions
(x, y, z) will vary with time. For example, we considered
motion along the x axis only. We choose a rectangular
coordinate system to represent the displacement of the
particle p relative to the S inertial frame, when this
displacement is plotted against time t we obtain, for
example, the curve MN (Fig. 3). Such a curve is called a
word line of particle p and represents the loci of
space-time points corresponding to the motion. If the
particle P  moves in a straight-line uniform velocity, the
world line is a straight line for accelerated motion, the
world line is curved.

Assume the motion of the particle is observed from
another reference frame S’ moving with velocity ν relative
to the frame S. Let the origin of the two reference frames
concur at t = t’ = 0. According to the Galilean
transformation:

(9)x ' x- t 

(10)t ' t

For the y axis to have the same dimensions as the x
axis, multiply t by c where c is the velocity of light, to get
ct = w. Therefore, Eq. 9 and 10 can be written as:

(11)x ' x- w/c 

(12)ct ' w ' w 

The x-axis of the S frame is given by w = 0 while the
w axis is given by x = 0. Similarly, for the S frame the x’
axis is given by w’ = 0 and using Eq. 12 a, we have that
w’= w = 0. This means that the x’ axis concurs with the x-
axis. Also, the w’ axis of the S’ frame is given by x’ = 0
Therefore, from Eq. 11 a, the equation for that axis is:

0 x- w/c 

Or

(13)x w/c 

This is the equation of a straight line QQ shown in
Fig. 4, from (Eq. 13) tan φ = ν/c. Hence, the Galilean
transformation involves the transformation from
rectangular axes to axes in which the time is slanted. The
coordinates of any point on the world line can be
determined by the two sets of axes. There is no difficulty
with the scales of the x and x’ axes, since, they coincide.
However, the time scales are different. Suppose the line
ABCD is drawn parallel to the x axis, where OB
corresponds to time on the w axis. Then OC corresponds
to time w = 1 on the w’ axis. If the time axes are regulated
using those distances, it can easily be checked that time 
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x = vc
w

Φ

0
K L

M

Fig. 4:Geometrical determination of the coordinates of
point N from two inertial frames using the Galilean
transformation

Coordinates of the world line at point N as represented by
OF in the S frame and OG in the frame are equal
following the Galilean transformation.

Let consider the space coordinates of the point N in
the S  frame  given  by  the  distance  OL  where L is the
point  where  the  line  from  N  parallel  to  the   axis
meets  the  x  axis.  For  the  S  frame,  we  must  also
draw from N a line parallel to the w’ axis. It cuts the x’
axis at K, therefore, the space coordinate is given by the
distance OK. With this procedure, it is possible to obtain
the coordinates of a particle in motion from different
inertial frames in uniform relative motion. Once the
relative velocity v is known, it will be possible to draw
the w’ axis using the relation, tanφ. = ν/c. Note that
because  the  classical  Galilean  transformation  is valid
at ordinary speeds ν<<c and the angle φ is necessarily
small:

Lorentz transformation as a geometrical
representation of inertial frames and worldline of a
particle: In the Galilean transformation, the time
coordinate of one inertial frame does not depend on the
space coordinate of one inertial frame. But in special
relativity time and space are codependent as seen in
Lorentz’s transformations where the time coordinate of
one inertial frame be contingent on both space and time
coordinates of another inertial system. Therefore, instead
of creating space and time distinctly as is done in classical
physics, it is natural in relativity to treat them together
[15]. Minkowski was the first person to show how this
could be done; it involved the introduction of
4-dimensional x, y, x, ct space. By taking only the x
coordinate and the time Lorentz transformations, we have:

(14)

 

 

 

 

1/2
2 2

1/2
2 2

2

1/2
2 2

2

1/2
2 2

x- t
x '

1- /c

x '+ t '
x

1- /c

t- x/c
t '

1- /c

t+ x/c
t

1- /c





















Again, we want the dimensions of the ordinate and
abscissa to be the same, hence, we multiply time by the
velocity of light  and set the product equal to w viz w = ct
and w’ = ct’. Also set ν/c = β. With that, the Lorentz
transformation Equations in Eq. 12 become:

   
x- w x+ w

x ' ;x '
1/2 1/22 21- 1-

 
 

 

 
w- x

w'
1/221-






 
w'- x'

w
1/221-






(15) 
w'- x'

w
1/221-






As before, we start by drawing the axes of the S
frame (w, x) orthogonal as shown in Fig. 5. Once again,
we can draw a world line at any point given by tanθ =
dx/dw   =  1/c   (dx/dt).   The   derivative   dx/dt   is  the
velocity   of   the   particle   =   u.   Consequently,   tanθ
= u/c, since, u<c for a material particle, we have that
tanθ<1, therefore ,the angle is always <45°. For light
wave u = c,  therefore, tanθ = 1 making θ = 45°. This
means  that  the  world  line  of  a  light  wave  is a
straight  line  inclined  at  an  angle  of 45° to the axes
(Fig. 5). We have taken the axes of the S frame as
orthogonal. The x’ axis of S’ the frame is given by w’ =
0 in Eq. 13. This gives the equation of the x’ axis as w =
βx (Fig. 6). Similarly, the w’ axis is given by x’ = 0
changing this in Eq. 13 gives x = βx as the equation for
the w’ axis (Fig. 7). In both cases, tani = β. What is clear 
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w

0

w’

w = wβ

Φ

Φ

w = xβ

w = 0
x

45°

W

0

World line

World line of light wave

45°

x

θ

Fig. 5: World line of particle and world line of light wave

Fig. 6:Illustration of axes of two inertial frames under
Lorentz transformation

from the above is that Lorentz transformation comprises
transformation from an orthogonal system to a
non-orthogonal system. Recall that in the Galilean
transformation only one of the axes is oblique on
transformation.

To obtain unit length on the axes we have to make
use of calibration hyperbolae w2-x2 = 1 and x2-w2 = 1
which approach asymptotically the 45° world line of light
waves as shown in Fig. 7. The hyperbola, x2-w2 = 1 cuts
the x axis (i.e., w = 0) at x = ±1. Therefore, the point
where this hyperbola meets the w axis defines unit length
on that axis. Correspondingly, the hyperbola w2-x2 = 1,
meets the w axis (i.e., x = 0) at w = ±1; therefore, where
that hyperbola meets the w axis defines unit length on that
M. Recall that the equation of that axis is w = βx We
attain the point M by substituting this in the equation of
the hyperbola.

This gives x2-β2x2 = 1:

 
1

x
1/221-

 



Substituting the above equation in Eq. 16, we have:

(16)
 

 
   

21-2x- x
x ' 1

1/2 1/22 2 21- 1- 1- 1/2


    

  

Consequently, the distance OM in Fig. 7 above gives
length on the x’ axis. Similarly, it can be shown that the
point N where the hyperbola w2-x2 = 1, meets the w’ axis
gives unit length on that axis.

The development of the special relativity theory using
four-vectors: A vector can be signified using a
coordinate system fixed in space. If the axes of the
coordinate system are rotated in space, the vector itself
must not be changed in either magnitude or direction[14].
Therefore, it means that the components of the vector
must transform in a particular way when the axes are
rotated. We can then subsequently define a vector- if the
components of any quantity transform similarly to the
mechanisms of the vector when the coordinate axes are
rotated in space, then the quantity is termed a vector. A
4-vector in the Y1, Y2, Y3, Y4  space will be defined as a
quantity that transforms under Lorentz transformation, in
a similar way as the Y1, Y2, Y3, Y4 coordinates of a point
in four-dimensional space i.e:

(17)' ' ' '
1 1 4 2 2 3 3 4 4 1

v v
Y Y +i X ; Y Y ; Y Y ; Y Y -i Y

c c
           
   

Therefore, B for example is defined to be a 4-vector
if under a Lorentz transformation:

(18)

' ' ' '
1 1 4 2 2 3 3 4

4 1

v
B B +i A ; B B ; B B ; B

c

v
B -i B

c

       
 

 
 
 

In analogy with Eq. 16 above, we have that:

(19)

2 2 2 2' ' ' ' 2 2 2 2
1 2 3 4 1 4 2 3

2
2 2 2 2

1 4 1 2 3 4

v
B +B +B +B B +i A +B +B +

c

v
B -i B B +B +B +B

c

    
 

   
 

Therefore,   the   length   of   a   4-vector  is
unaffected  under  rotation  of  axes  (that  is  by a Lorentz
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w -x  = 12 2
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(w’ = 0)

X
0 R

w’ (x’ = 0)

Fig. 7: Using calibrating hyperbolae to determine unit lengths on the axes of two inertial frames
 
transformation). If the square of the length of a 4-vector
is optimistic, it is a space-like vector but if it is adverse,
it is a time-like vector. This can be associated with the
case of invariant time deliberated above where if the
square is positive, we have a time-like interval whereas if
it is negative, we have a space-like interval[15]. To advance
further, the four components of a position 4-vector can be
represented by (Y1, Y2, Y3, Y4) = (r, ict) The three
components Y1, Y2 and Y3 are the components of a vector
in ordinary three-dimensional space; the fourth
component is equal to a scalar time . All 4-vectors are1
have this property. If the components of another position
4-vector are Y1+δY1, Y2+δY2+Y3, δY3 Y4+δY4 we can
write the transformation equations as in Eq. 17 (for

example  and if we  1 1 1 1 4 4
v' 'Y + Y Y Y + Y +i Y + Y
c

      
proceed to subtract Eq. 17, we obtain this:

(20)

' ' '
1 1 4 2 2 3 3

'
4 4 1

v
Y Y +i Y ; Y Y ; Y Y

c

v
Y Y -i Y

c

            
 
      
 

From Eq. 20, it can be resolved that the increases in
a 4-vector from another position 4-vector. The length of
a 4-vector is invariant, thus:

2 2 2 2' ' ' ' 2 2 2 2
1 2 3 4 1 2 3 4Y + Y + Y + Y Y + Y + Y + Y        

This   corresponds   to   the   relation   of  dτ2 = dt2-
1/c2  (dx2+dy2+dz2)  which  can  be  re-written  in  the
form:

(21)
 2 2 2 2 2 2

22 2
2

2 2

ic x + y + z -c t

x y ic
+ -c

t t t

     

        

If the two events having coordinates (Y1, Y2, Y3, Y4) 
 and Y1+δY1, Y2+δY2+Y3, δY3 Y4+δY4 correspondingly
state to the positions of a particle at times t and t+δt in the 
S frame, then:

x ' y' z

x y z
u u u

t t t

  
  

  

Hence, Eq. 21 becomes:

(22) 
2

1/22 2 2 2 2
2

u -c -c t 1-u /c
t


   



In Eq. 22, u is the three-dimensional velocity of the
particle in the S frame. If all components of a vector are
multiplied by a scalar or an α invariant, the result is a new
vector of length α times the original vector. Let the
4-vectors Y and Y+δY refer to the positions of a particle
at times t and t+δt, then δY = (δY1, δY2, δY3, δY4) by the
invariant 1/δt, we attain a quantity that is also a 4-vector.
Let this be denoted by U then:

2 2 2 2
1 2 3 4

2 2 2 2

dx dx
, ,

Y Y Y Y 1-u /c dt 1-u /c dt
U , , ,

dz dz

1-u /c dt 1-u /c dt

 
               
 
 
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Since, dx/dt = ux etc., where u is the ordinary
3-dimensional velocity of the particle, we have:

   

   
   

yx
1/2 1/22 2 2 2

1/2 1/22 2 2 2
z

1/2 1/22 2 2 2

uu
, ,

1-u /c 1-u /c u ic
U ,

u ic 1-u /c 1-u /c

1-u /c 1-u /c

 
              
 

The 4-vector  is called 4-vector. In the  frame the
4-vector of the particle is:

(23)
   

'
'

1/2 1/22 2 2 2' '

u ic
U ,

1-u /c 1-u /c

 
 
 
 

where u’ is the three-dimensional velocity of the particle
measured in S’. If  is a 4-vector, it must transform
according to Eq. 16, thus:

 

' x
4 4 1 2 2 2 2

2
x

2 2

v ic v u
U U -i U -i

c c1-u /c 1-u /c dt

ic 1-vu /c

1-u /c

        
   



But from Eq. 23, we have:

'
4 2 2'

ic
U

1-u /c


Hence,

(24)
 2

x

2 2' 2 2 2 2

1-vu /c1

1-u /c 1-v /c 1-u /c


This is the transformation for  obtained:'2 21/ 1-u /c

 x41 1
2 2 2 2 2 2

uu ic' xU U +i U +i
c c1-u /c 1-u /c 1-u /c

                  

And from Eq. 21, we have x
1

'2 3

'u'U
1-u /c



Therefore,

  '2
x

x
2 2

2u - 1-u /c'U
1-u /c

 


Using Eq. 22, we obtain  This is the
 x

x
x

u -'U
21- u /c





transformation Equation of the x component of the
three-dimensional velocity of the particle. From Eq. 18 

therefore:2 2
'U U

y

'2 2 2

u ' uy

21-u /c 1-u /c


Or

y

'2

y
2

21-u /c'u u
21-u /c



Using Eq. 24, we have  
y

2 21- /c'u
21- u /cx






In the same way, we have 
z

z
2 2u 1- /c'u

21- u /cx






This completes the velocity transformation derivation
using the method of 4-vector. The length of a 4-vector is
an invariant. We have:

     
2 2 2 2

2 2 2 2 2
1 2 3 4 2 2 2 2 2 2

2u i c u -c 2U U +U +U U + -c
1-u /c 1-u /c 1-u /c

   

From the principle of the constancy of the velocity of
light, U2 must be an invariant and since, it is negative, the
4-velocity is a time-like 4-vector. If  is the 4-velocity of a
particle at a point x+δx, y+δy, z+δz at a time t+δt then the
increments in the components of U are the components of
a 4-vector that is (δU1, δU2, δU3, δU4) is a 4-vector. This
agrees with what we found for the position of 4-vector.
Multiplying the 4-vector by the invariant 1/δt we attain
another 4-vector, B which is called the vector acceleration
or 4-acceleration. After some algebra we find:

(25) 
 

 
 

 
22

22 2 2 2 2 2

3c u.a ic u.adU c
B a+u ,

2dt c -u c -u c -u

  
           

where α is the 3-dimensional acceleration of the particle.
Multiplying the 4-vector by the mass of the particle we
obtain:

(26) 
2 2 2 2

mu imc
p mU , p,iE/c

1-u /c 1-u /c

 
   
  
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P is called the 4-vector momentum or 4-momentum while
p = mu/(1-u2/c2)1/2 is the 3-dimensional momentum and E
= mc2/(1-u2/c2)1/2 is the total energy of the particle. The
equivalent 4-momentum in S’ is:

(27) P' p',iE' /c

The length of the 4-vector is an invariant, we have:

 2

2 2 2

2p + iE/c constant

p -E /c constant





where p = 0, E0 = mc2 (the rest energy of the particle) so
that the constant is equal to -m2c2. Therefore, E2 =
p2c2+m2c4. Since, the length of a 4-vector is invariant in S’
we have p’2-E’2/c2 = -m2c4. Therefore, E’2 = p’2c2+m2c4.

To obtain the transformation for the momentum of a
single particle, we use the fact that (p’, iE/c) is a 4-vector.
For the first component using (Eq. 18), we have:

 

' '
1 1 4 x x

2
x

v v
P P +i P or P P +i iE/c

c c

p -vE/c

          
   



Similarly:

' '
2 2 y y

' '
3 3 z z

P P , therefore p p

P P , therefore p p

 

 

From , we have:'
4 4 1

v
p p -i P

c
   
 

 xiE' /c iE/c-i Px E' E- p
c

     
 

From Eq. 26 it follows that dP = (dp, i dE/c) is a
4-vector. Multiplying by 1/dτ, we obtain the Minkowski
4-dimensional force which is defined by:

(28)
2 2 2 2

dp dp i dE dp i dE
F , ,

d d c d c1-u /c d 1-u /c d

             

Space-time four-vectors: In this study, we consider
presenting the impression of a vector to describe the
separation of two events occurring in spacetime. The
crucial idea is to show that the coordinates of an event
have transformation properties equivalent to:

'

'

'

'
RR

x cos sin 0 x

y -sin cos 0 y

z 0 0 1 z

      
            

       

For ordinary three-vectors, however with some
surprising differences. To begin, we will reflect on two
events E1 and E2 occurring in space time. For event E1

with coordinates (x1, y1, z1, t1) in a frame of reference S

and event  in a frame of reference S’, these 2 1 1 1 1
' ' ' 'E x ,y ,z , t

coordinates are related by the Lorentz transformation
which we will write as:

(29)

' x
1 1 1

' x
1 1 1

'
1 1

'
1 1

v
ct ct - x

c
v

x - ct + x
c

y y

z z


 


 





And correspondingly, for event E2 Then we write:

(30)

 ' ' ' x
2 1

' x''
2 1

v
c t c t -t c t- x

c
v

x x -x - c t+ x
c

y' = y

z' = z


     


    

 
 

Which we can write as:

  (31)

c t ' - /c 0 0 c tx
x ' - /c 0 0 xxs'
y ' 0 0 1 0 y

z ' 0 0 0 1 z

       
                
             

It is interesting to understand this equation as
concerning the components with respect to a coordinate
system S’ of some sort of ‘vector’ to the components with
respect to some other coordinate system S of the same
vector. We would be justified in doing this if this ‘vector’
has the properties, similar to the length and angle between
vectors for ordinary three-vectors which are
self-determining of the choice of a reference frame. It
turns out that it is ‘length’ defined as:

(32)
         

   

2 2 2 2 2s c t - x + y + z

2 2c t - r

         

 

That is invariant for different reference frames i.e.:

(33)
         

       

2 2 2 2 2s s t - x + y + z

2 2 2 2c t - x ' + y' + z '

         
      
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This invariant quantity ΔSs is identified as the
interval among the two events E1 and E2 Δs  is analogous
to but essentially different from, the length of a
three-vector is that it can be positive zero or negative. We
could also talk about the ‘angle’ between two such
‘vectors’ and show that:

(34)    1 2 1 2 1 2 2c t c t - x x + y y + z      

Has the same value in all reference frames. This is
equivalent to the scalar product for three-vectors. The
quantity is defined by:

(35)

c t

x
s

y

z

 
     
   



Is then understood to link to a property of spacetime
representing the separation between two events which has
a complete existence independent of the choice of
reference frame, and is identified as a four-vector. This
four-vector is recognized as the displacement four-vector
and signifies the displacement in spacetime between the
two events E1 and E2. To distinguish a four-vector from an
ordinary three-vector, a superscript arrow will be used. As
was the case with three-vectors, any quantity which
transforms in the same way as Δs is also named as a
four-vector. For example, we have shown that:

(36)

 

 

xE' /c E/c - pxc

' xp - E/c + px xc
'p py y

'p pz z


 


 





Which we can write as:

(37)

E' /c
E/c- /c 0 0x'p px - /c 0 0 xx

' p0 0 1 0p yy
0 0 0 1 p' zpz

 
    
              
          

 

Where we see that the same matrix appears on the
right-hand side as in the transformation law for Δs’. This
appearance relates the components  in two different
frames of reference S and S’ of the four-momentum of a

particle. This four-momentum is of course by this
transformation property also a four-vector. We can note
that the (‘length’) of this four-vector is given by:

(38)
   

 
2 22 2 2 2E/c - p +p +p E/c -px y z

2 2 2 2 2 2E -p c /c m c0

     



where m0 is the rest mass of the particle. This quantity is
the same (i.e., invariant) in different frames of reference.
An additional four-vector is the velocity of four-vector,
i.e:

(39)

cdt/d

dx/d
v

dy/d

dz/d

 
    
   



Where:

(40)d ds/c 

And is recognized as the proper time interval. This is
the time interval measured by a clock in its rest frame as
it makes its way among the two events an interval ds
separately. To see how the velocity four-vector narrates to
our normal understanding of velocity, reflect a particle in
motion relative to the inertial reference frame S[16-18]. We
can recognize two events, E1 wherein the particle is at
position (x, y, z) at time t and a second event E2 wherein
the particle is at (x+dx, y+dy, z+dz) at time t+dt. The
displacement in space and time between these events will
then be represented by the four-vector   defined in Eq.ds



35. Furthermore, during this time interval dt as measured
in S, the particle undergoes a displacement dr =
dxi+dyj+dzk and so has a velocity:

(41)
dx dy dz iu i+ j+ k u +u j+u kx y zdt dt dt

 

The time interval among the events E1 and E2 as
measured by a clock moving with the particle will be just
the proper time interval dτ in the rest frame of the particle.
We, therefore have by the time dilation equation:

(42) 

d
dt

21- u/c




where, u is the speed of the particle. So, if we form the
four-velocity to be related to the two events E1 and E2, we
write:
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(43)
   

ccdt/d c
udx/d dx/dt1 1 x

u
udy/d dy/dt2 y1- u/c 21- u/c

dz/d dz/dt uz

    
                
              



Thus, if u<<c, the three spatial components of the
four velocities reduce to the usual components of ordinary
three-velocity. Note also that the invariant (‘length’) of
the velocity, four-vector is just c2. Finally, if we take the
expression for the four-velocities and multiply by the rest
mass of the particle, we get:

(44)
 

x
0

y

z

E/cc

pu1 x
m u

pu2 y1- u/c
u pz

  
  
      
        



Which can be recognized as the four momenta de ned
above. We can continue in this way, de ning
four-acceleration as:

(45)
du

d
 






And the four-force, also known as the Minkowski force  
. A direct generalization of the Newtonian definitionF



would have been but this definition does not apply to zero
rest mass particles, hence, the more general alternative in
Eq. 46:

dp
F

d






CONCLUSION

In this study, the geometric representation of
spacetime and the use of four-vectors were vital to the
successful  f indings of  three-dimensional ,
four-dimensional non-Euclidean geometry in Lorentz and
Galilean transformations. Thus, the usual opinion that
there is a sole set of events presents now in a
three-dimensional or four-dimensional spacetime cannot
be continual. Minkowski’s path to spacetime, Galilean
transformation as a geometrical representation of motion,
Lorentz transformation as a geometrical representation of
inertial frames and worldline of a particle, the expansion
of the special relativity theory using four-vectors and
space-time   four-vectors  were   discussed   in   detail.  In
the   Galilean   transformation,   the   time   coordinate  of
one inertial frame does not depend on the space
coordinate of the time inertial frame. But in special
relativity, time and space are code pendent as seen in

Lorentz’s transformations   where   the   time   coordinate 
 of   one   inertial   frame   is  contingent on both time and
space coordinates of another inertial system.
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