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Abstract: Solving Ordinary value problems (ODEs) numerically 1s an area that has drawn much consideration
in latest literature and hence, the general object of this study. In this study, new hybrid block method 1s
proposed using collocation and interpolation approach and then is employed to approximate third order initial
value problems directly. Certain conditions of the block method established include it being of step
number k = 2 with two off-step pomts. This hybrid block method mvolves of mathematical expressions that will
concurrently supply results at the step and off-step points. Numerical properties which mvolve zero stability,
order of the method, consistency and convergence are established. After that some third order initial value
problems are considered and the new hybrid block method is employed to solve it numerically and comparison
was made with existing methods in terms of error. The generated numerical results show superiority of the new
method in terms of error. Therefore, this developed hybrid block method can be adopted a more appropriate
numerical approach to approximate the third order TVPs numerically.
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INTRODUCTION

In this study, our main focus is to improve the
numerical approximation solution of the mitial value
problems of the form:

Y =f(xy,¥.,y"), xe[a, b] (1)

With three mnitial conditions y (a) =1, v* (@) =1, v”
(a) = 1;. Such these problems occur m numerous fields of
engineering and applied sciences such as celestial
mechanics, theoretical physics dynamics, nuclear physics,
chemistry, electronics and so on.

In the last decades, methods for the numerical
solution of the third order initial value problems in (1)
have attracted the mnportance of many researchers.
Yap et al. (2014) proposed three step block method with
two off step pomnts for the solution of third order Ordinary
Differential Equations (ODEs). More recently, by
Awoyemi (2003) by Abdelrahim and Omar (2015,
2016), Omar and Abdelrahim (2016) introduced one step
hybrid block method for the solutions of these equations.
Similarly, Omar and Kuboye (2015) by Awoyemi et al.
(2006) constructed a seven step block method which
solves certain third order initial wvalue problems.

Motivated by the research by Yap et al. (2014), we
construct a new accurate six order two step hy-brid block
method with two off step points. The remaining part of
this study is built as follows.

Derivation of the method: In this study, we will derive
two-step six-order implicit hybrid block method with two
off step x ,,,;; and x,,; using interpolation and collocation
technique. Let us consider the power series given by:

y)= $a[ e rebnal @

In order to approximate (Eq. 1) where, v is the number
of interpolation points, m is the number of collocation
points, h = x,-x,; is constant step size andn=0, 1, 2, ..., N,
differentiating (2) three times gives:

uin:-li (i-1)(i-2) . { XX, J"B 3)

=5 h’ h

Yy (x) = (xy.y.y)=

Equation 2 is interpolated at x, x., and x,,
while Eq. 3 18 collocated at all points, 1.e., X, X X1
X5 Xy 10 Obtamn the following equations which can be
written in matrix form:
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Gaussian elimination method 1s applied in (Eq. 4) to
find the values of a, 1 = 0 (1) 6. Then, these values are
substituted back mto Eq. 2 to give a continuous implicit
scheme of the form:

{m]
mix)= d o (x)y .+
y(x) RIne (%) Yau
N &)
dv B(x)f 0,1,2
X +1:m: ERE
1:n’§’£,2dx(m) 1( ) n
3 3
Where:
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Equation 5 is evaluated at the non-interpolating
point, 1.e., X5 and x,., when m = 0 and at all points when
m = 1, 2 to produce the discrete schemes and its
derivatives. Next, the discrete scheme and its derivative at
x, are combined to obtained the following Eq. 6 m the
matrix form:

AY_ = BR,+DR,+CR, (6)

Where:
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Multiplying Eq. & by A~ gives hybrid block method

of the form:
IY, =BR,+DR,+CR, (7
Where:
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Properties of method
Order of method: The linear difference operator L.
associated with (Eq. 7) 1s defined as:

L[y (x);h|=1Y,-BR,-[DR,+CR, | (8)

where, ¥ (x) is an arbitrary test function continuously
differentiable on [a, b]. Y, and R; components are
expanded mn Taylors series, respectively and their terms
are collected in powers of h to give:

L [y (x), h] = Qy (x)+Qhy (x)+Q,h'y" (x)+, .. 9)
Definition 1: Hybrid block method (Eq. 7) and associated
linear operator (®) are said to be of order p, if
Q=Q=Q =,

Q.,, =0 with error vector constants
P

épﬂ =0 . Expanding the functions of y and f- in (Eq. 7)

gives:
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Comparing the coefficients of IV and y' vyields the
order of the method which is [6, 6, 6, 6]

Zero stability
Definition 2: The hybrid block method (Eq. 7) 1s said to be
zero stable, if the multiplicity of non trivial roots of the
first characteristic polynomial not >3.

In order to find the zero-stability of the hybrid block
(Eq. 7), we only consider the first characteristic
polynomial according to definition (2). Therefore, we
have:

II(z)= 4B =z

=z (z])

D S D e
< O = O
D = D O
—_— o O O
[ o T o B o]
[ o T o B o]
Lo T T - B '
—_— = e

Which implies z=0, 0, 0, 1. Hence, our method is zero
stable.

Consistency
Definition 3: Hybrid block method is said to be
consistent, if it has order> 1.
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Table 1:  Comparison of the new method with some existing methods for
solving problem 1

h Methods EGapatx=1 Steps
New method 2:08e713 40
Yap et al.(2014) 4:23e712 27

0.0125 Adams 3:56e78 80
Awoyemi and Idowu (2005) 7:60e° 80

E(xy)atx =4

New method 7:88¢71 200
Yap et al (2014) 3:50e71 134

0.01 Adams 2:91e 400
Awovemni and Idowu (2005) 1:16e”? 400

Table 2: Comparison of the new method with some existing methods for
solving problem 2

h Methods Expax=1 Steps
New method 1:28e7! 5
Yap et al. (2014) 1:11e7t? 4

0.1 Adams 2:76e78 10
Awoyerni et al. (2006) 1:07e7¢ 10

E(xp)atx=35

New method 6:46e7 1 100
Yap et af. (2014) 1:19¢712 67

0.025 Adams 972 200
Awovemi ef al. (2006) 3:53¢78 200

ie., pzl. Our hybrid block method (7) is consistent
because it satisfies the condition stated in defimtion 3.

Convergence

Theorem 4 (Henrici, 1962): Consistency and zero
stability are sufficient conditions for a linear multistep
method to be convergent following Henrici theorem, the
new hybrid block method proposed 13 convergent, since,
1t 1s consistent and zero stable.

Numerical examples: Two numerical examples were used
to ascertain the accuracy of the method. The new block
methods solved the same problems that existing methods
solved (Tablel and 2).

Problem 1:
y"-2y"-3y+10y-34xe*+16 = 0, y (0) =
3.y (0)=0, y"(0) =0

Exact solution: y (x) =e™

Problem 2:
Yy =0,y (0) =Ly (0)=-1y"(0)=1
Exact solution: y (x) =e " with h = 0.1
CONCLUSION
A new two step hybrnid block method with two
off-step pomnts for the direct solution of third order

ordinary differential equation has been developed
successfully. The developed method is consistent,
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zero-stable and also, convergent. When solving the same
problems, the numerical results confirm that the new
method produces better accuracy, if compared to the
existing methods.
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