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Abstract: In the present study, we obtain using the lever law of the lever, an explicit formula that allows to
calculate the center of mass of a system of n-particles with masses m,, m,, ..., m>0, located on the half plane
superior of Lobachevsky H’, endowed with a conforming metric which induces constant and negative Gaussian

curvature.
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INTRODUCTION

Hyperbolic geometry 1s usually presented as one of
the paradigms of so-called non-Euclidean geometries,
since their different models arise if the postulate of the
parallels of BEuclid 13 demed. Its origins date back to the
begimnning of the 19th century with the researches of
Schweikart, Taurinus, Bolyai and Lobachevsky. Some
mathematicians of great importance such as Euler, Gauss,
Riemann and Poicare, among many others, made notable
contributions in this area of mathematical knowledge
(Cannon et al., 1997).

One of the models of hyperbolic geometry, known as
Minkowski space 18 one of the fundamental pillars
for the understanding of space-time in the theory of
relativity. Currently, the hyperbolic geometry has multiple
applications to electrical phenomena and microwave
transmission m engineering. There are also some
comnections that allow us to find applications of some
groups of transformations (matrices) associated with
models of hyperbolic geometry, to the theory of numbers
as evidenced in 1995 with the demonstration of Fermat’s
last theorem by Andrew Wiles (Terras, 2013).

The purpose of this study is to present explicit
formulas for the calculating (hyperbolic) center of mass
for a system formed for two or more particles with positive
masses sited on the poincare upper half-plane. The
concept of center of mass is of great relevance for the
study of physical phenomenal, since, this has important
geometric and mechamc properties. Its defimition on
Euclidean spaces (zero curvature) it 1s easy since the
existence of a linear structure in this type of spaces.

However, in cwved spaces (spaces with non zero
Gaussian curvature), this definition 1s not direct and this
15 the reason for the absent of formulas to calculate
centres of mass in this cases.

Diacu (2012) refers to the difficulty of defining center
of mass in curved spaces. He provides a class of orbits in
the curved n-body problem for which “no point that could
play the role of the center of mass is fixed or moves
uniformly along a geodesic”. This proves that the
equations of motion lack center-of-mass and linear
momentum integrals. But nevertheless, he 1s not provide
a way to calculate or determinate this element. Finally,
Borisov and Mamaev (2006) establish the non existence
of frame for the center of mass in spaces with constant
non zero Gaussian curvature but 1s not provides a proof
of this affirmation.

In celestial mechanics the concept of center of mass
1s important because i the classical case, it 1s an integral
of motion whereas in the context of curved spaces it 1s not
and this is the reason why the curved 2-body problem and
the curved Kepler problem are not equivalent. This study
1s organmized as follow:

MATERIALS AND METHODS

Preliminary

Center of mass of a system of particles: Given two
positive masses m,, m, sited at the pomts x,, x,.R", the
(Euclidean) center of mass of the system is defined by:

mx, +mx
x = 0t 272 (1)

m, +m,
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The point x is sited on the segment (Geodesic)
joining %, with x; and moreover, if d; and d, are the
Euclidean distances from x,-x and x,-x, respectively, then
the following equation is satisfied:

(2

m,d, =m,d,

This relation is known as the Euclidean lever rule. The
defimtion of center of mass can be easily extended to n
particles sited on the Euclidean space R", due to the linear
structure with which they are provided but the curved
spaces, this 1s not so sunple. Garca-Naranjo et al. (2016),
it 1s presented a definition for the hyperbolic center of
mass in H by means of:

m, sinh2d, = m, sinh2d, 3

This defimtion of hyperbolic center of mass 1s
introduced to simplify the study of some configurations
called relative equilibria, for the 2-body problem in H. In
this study, we deduce the expression for the hyperbolic
center of mass by assuming that holds of the hyperbolic
lever rule: m,d, = m,d, which is the natural extension of
the Euclidean lever rule to H.

A deeper discussion about the definition of the
center of mass in curved spaces can be encountered in
(Ungar et al., 2008).

The Poincare Upper Half-Plane Model: Ts the set define
by H = {zC:Im(z)>0} endowed with the conformal metric
given by:

4dzdz

—ds* = ;
(z-2)

If we consider this as a subset of the complex plane
C or equivalently, H= {(x, y):y>0} with the metric ds* = y*
(dx* + dy?). Tt is a well know fact that H with this metric is
a two-dimensional Riemanman manifold geodesically
complete of Gaussian curvature k = -1.

This arc length is invariant under the action
of g n SL{(2, R) on zH defined by fractional linear
transformation:

gz=g(z)=(az+b}/(cz+d)

If g is the 2x2 matrix|a ';lwith a, b, ¢, dR and
ad-bec =1 and g gives a corffofmal or angle-preserving
mapping of H.

In H, there are two types of geodesic: vertical
half-lines with initial point on the x-axis, defined by L, =
{(b, y)y>0} or half-circles with centres i the x-axis, L =
{(x, y):(x-cy+y* = %, y>0}. In this model of hyperbolic

50

geometry, there are infinitely many geodesics through a
given point which are parallel to a given geodesic. The
following proposition is very important for the definition
of hyperbolic center of mass on H.

Proposition: For each pair p, and p, of distinct points in
H, there exists a umque hyperbolic geodesic passing
through p, and p, (Anderson, 2006; Stahls, 2007).

The Upper Half-Plane 1s a model of hyperbolic
geometry and is an example of absolute or neutral
geometry, moreover 1s a intrinsic geometry. There are two
ways to calculate distances in H as follow: given two
pomnts p,(x;, y;) and p,(x;, y2).

If x, =x, and y,<y, (two points in the same Euclidean
vertical line), the length of segment jomning p,-p, s given
by d(p,, p.) = Iny./y,. If x,.%;, then there exist a Euclidean
line non vertical contaimng both pomts and a line
perpendicular to it, passing for the middle point of
segment joining p, and p, and this passing for the x-axis,
at a pointé(c.9) which is the center of the semicircle
passing for p, and p,. It 1s easy to prove that ¢ is given
by:

7X12+Y12*(X§+Y§) (4
2(x, —-x,)

Let a,, a, be the angles determined for the segments

ep; and ¢, , measured from positive x-axis and generality is

not lost if we suppose that .<i,, in this case the
hyperbolic distance 1s given by:

scco, —cota,

d(p. p,)=In (5

sccol, —cot o

Now by using trigonometric identities:

l—cosy

R}
cscy —coty = 2sin"y/2 *tan% (6)

siny 2 siny/2cosy/2 -
we have the following relation:

tance, / 2
tanc, /2

d(pppz):ln {7

or by using the Cartesian coordinates:

d(p;, Pz)zlniyz(x‘ 1) (8)

We have that c. when x,x,” and ¢.- when x,x,” and
so, d(p, qllny./y,, namely, the definition of distance is
consistent with the definitions of two type of geodesic
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where the geodesics of first type can be considered
a half-circles with center either at +. or -. An unified
expression for the of hyperbolic distances d is:

(Xl % )2 +(Y1 _Y2)2
vy,

d(p,. p,) =arc cosh| 1+ )

which is not very useful for the purpose of the present
research.

RESULTS AND DISCUSSION

Center of mass on the Poincare upper half-plane model
Definition: Let m,, m, be two particles sited, respectively
i the points p,, p.H. The hyperbolic center of mass of
the system is the the unique point g in the Geodesic of H
joining p, with p, that satisfies the hyperbolic lever rule:

m,d, =m,d,
Where:
d, = d(p;, 9)
d, = d(p,, q)
d(p,, p,) = dtd,

Theorem: Letm,, m,, ..., m, be a system of n particles sited
at the points (X, ¥, ), (X5, ¥2)s .., (X5 ¥u)-H, then there exists
a unique point with coordmates (u, v) which is the
hyperbolic center of mass for the system.

Proof: It 15 enough to consider two particles with masses
m,, m, sited at points (x;, v,), (%;, v,), respectively and
consider the following two cases.

Case 1: x, = y,. Let m,, m, be two point masses sited at (x,,
v.), (X1, ¥o), respectively and let (1, v) be the unique point
satisfying the “hyperbolic lever rule” and d,, the distance
from (x,, y,) to (u, v) and d, the distance from the (x,, y,) to
(u, ¥), then u = x, and by using the hyperbolic lever rule
m,d, = m,d, and substituting the correspond values we
obtain:

mllnl:mzln&

¥i v
or equivalently:

my+my My My
v =¥1'¥:

Inductively, if m,, m,, ..., m, are n masses sited in the
points on the same vertical line (x, v,), (X, ¥5), ..., (X, ¥.),
then the hyperbolic center of mass is sited in a point of
the form (1w, v) with u = x (sited in the same vertical line)
and where v satisfies:
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Yy oy (10)

where, m= m+m,+, ..., m,.

Case 2: x,.%,. Let L_, be the geodesic passing through (x;,
vy), (%3, y;).H. First, we can suppose that ¢ = 0, namely the
center of half-circle is 8{0.0) | so, x *+v,* = x,*ty,’ =1°. Let
q(u, v) be the unique point at the geodesic L, | that
satisfies the hyperbolic lever rule m,d, = m,d, where dl =
d(x,, y,), (u, v)) and d; = d((x,. y2), (u, v)). If ., ., and . are
the angles determined by (x;, v,), (x5, v;) and g(u, v),
respectively with the x-axis then the substitution in Eq. 10
yields:

ml]ntan@/Z m, tana, /2 11
tance, /2 tanB/ 2
or equivalently:
a0 w9 w6 (12)

—=tan™ Ltan™ %
2 2 2
where, m = m,+m, 18 the total mass of system. Now, we
obtain an expression for calculating the center of mass in
terms of the Cartesian coordinates and the given masses.
In Eq. 12, we can use the identity tan/2 = sin/1+cos, and
the relations s, = y,/1, cos.; = X,/T, 81L, = ¥,/T, CO8.; = X,/T,

$1M. = v/T, cOs. = /v, to obtain:
o fm
V —
r+u | r+x,

my /m
Y,
r+x,
The substitution:

Ao v Py m
' I+x, |m

into Eq. 13 and the relation u’+v’
quadratic equation:

Y, (13)

1’ becomes the

(1 + az)u2 + 2a‘tu +(a2 71)r2 =0 (14

rl-a*/1+a’.
The value u = o mples v = 0, a pomnt that does not
belong to H, accordingly, the umque admissible
solution is the second value. Substituting the values
of r and a, we obtain the next relations for the hyperbolic
center of mass in terms of given Euclidean coordmnates

and masses:

with two distinet roots, u = -t and u

2

: 2 {(1/Xf+yf +X1)ml( XZ -*—jf2 +X2)m2T _(Y;nl)fznz)é
u:1fxl Ty 2

{(mﬂ%)% (mﬂiz)%T +(ypy )ﬁ

(15)
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AT ol s
o

Vz,/foryf

(16)
or in more compact form:
u:r[(rJer) (rex,) l(“Wl (17)
[(r+x) (r+x2)m2}"‘ (y1 v )
and:
2 1y gy é
A e

z

Z z
|:(r+ % )m1 (r+ Xz)m2 :|m + (Y;myrzm2 )m

withr= iZ +y7 = 2 +y2 and m = m+m, is the total mass of
system. Inductively, we can deduce a formula for a fimte
number of mass sited in the same Euclidean semicircle
centred at (0, 0): let m,, m,, ..., m, be, n punctual masses
sited in H, in the same Euclidean half-circle centred at (0,
0) and radio 1, L, , and let., ., ..., ., be, the angles formed
by these with the positive x-axis, then the pomnt (u, v) that
satisfies the hyperbolic lever rule, forming an angle . with
the positive x-axis satisfies the relation:

. tanmni (19)
2

where, m = m,+m;+, ..., m, 1s the total mass of system.
Moreover, by using the identity tan/2 = sin/l+cos, and

the relations sin., = y,/1, cos,, = w/1, fork =1, 2, ..., nand
8in, = v/T, cos. = u/t, we obtain that:
- 2z
u:r[H(r'f' Xk) :|2_(Hy}§ ) (20)
=)™ (T )
and:
1
2 +x )™
Y r[l_[yk r+x.) J (1)

[TT(r+x) “] (T

where, I = x v’ fork =1, 2, ..., n. For the general
case where x,.x, and ¢.0, we make the horizontal translation
X, =x-c, X, =x-¢, Y, = v,, Y, =y, this correspond to the
isometry of H, z.z-¢ and it is easy to verify that:
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X+ Y =XI+Y,]

namely, the pomts (X, Y)) and (X,, Y,) are sited in
a circle centred at origin (0, 0) and so, we can to
apply the last procedure, to obtain the center of mass
of the system the masses m,, m, sited in the points
(X, Y,), (X, Y,), obtaiming a translated center of
mass of coordinates (U, V) and so, the coordmates
of the center of mass of the original system (u, v) are
given haves for u= U+c, v = V+c. Proceeding inductively
and makmg considerations of two cases, it 1s possible to
computer the coordinates of the center of mass, for a
system the particles in H. This concludes the proof.

Relation with the hyperbolic center of mass on
the Poincare disk model: Coensider, the Poincare Disk
Dy = {zC:|z]<R} with the metric g4 - 4r 24zdz / (RP-zf ’ and
the Poincare Upper Half-Plane Hy = {w.C:Im(w)>0} with
the metric ds’ = 4R *dwdw / (w - w)’, then these two spaces
have the same Gaussian curvature k = -1/R* and by the
Minding’s theorem, they are isometric locally. Moreover,
the mapping, z.H,Dy defined by:

R{iR —w)
iR+w

z(w)

called the Cayley transform, provides an isometric
between the Poincare half-plane model and the Pomncare
Disk Model. The inverse of Cayley transform is w: Dp.Hy
defined by:
w(7) - iR(R ~z)
R+z

Now, if m,, m,, ..., m, are positive masses sited at the
points z,, 7, ..., ZDg, respectively with hyperbolic center
of mass z, and we make W, = W(Z,), k=1, .., n and
substituting this values in some of Hq. 10 or 19, we obtain:

en) M

namely, w send hyperbolic center of masses m H; to
hyperbolic center of masses in Dy which 1s direct
consecuence of isometric nature of w (Palencia and
Victoria, 2017). Last equation is equivalent to:

e e

If R.. then k.0 and this equation 1s reduced to:

R -z,
R+z

1-z /R
1+z /R
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Z: :;Zkzlmkzk

which correspond to the center of mass for a system of
particles on the plane with the usual Euclidean metric.

CONCLUSSION

In this study, we give the defimition of center of mass
of a system of particles on a Euclidean space, emphasizing
the “lever rule”, moreover we introduce the poincare
upper half-plane, endowed with a conformal metric, its
geodesic and study the formula for calculating distances
between its pomts. In this study 3, we deduce formulas to
calculate the center of mass of two or more particles with
positive masses sited over the upper half plane. Finally,
we establish a comection with the hyperbolic center of
mass on the model of Pomcare disk.
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