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System for Acquisition and Conditioning of Non-Audible Murmur Signals
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Abstract: To achieve recognition of silent speech, especially of the non-audible murmur this development raises
as a first step, the acquisition and transmission of vibration data from the sub vocal speech. Because of the
stochastic characteristics of an audio signal in the time domain this is treated and analyzed in the complex
frequency domain. To achieve the frequency analysis is implemented in this development a Fast Fourier
Transform (FFT). The data acquired and transformed with FFT are transmitted via a Wi-Fi network to a computer
for further analysis of signal and image processing through an application developed in C # language.
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INTRODUCTION

The signal acquisition stage is an indispensable part
of many electronic systems which interact with analog
signals. As part of these kind of systems, methods for
automatic speech recognition have been extensively
studied in recent years. The technological advances that
have been taking place, since, the last century also
provided new concepts and tools in order to improve the
human-machine interaction.

Silent Speech Interfaces (SSI) are defined as systems
of interaction that enable oral communication when
acoustical signals are not available (Denby et ., 2010).
Thus, SST systems would allow speech disabled persons
to communicate without restrictions or provide an
alternative form to have conversations in noisy places
ensuring the message integrity or in the case where exists
privacy limitations could be a choice to communicate
without restrictions in public places (Heracleous et al.,
2003).

One of the most important methods catalogued as a
SSI system is the detection of Non-Audible Murmur
(NAM). As the name implies, the NAM can be described
as the production of small whispers to be heard by
anyone but the person that produces it (Nakajima et al.,
2003).

As a first step to develop a system for silent speech
recognition that uses the NAM technique was proposed
the design of an electronic system to acquire the NAM
signals from a modified microphone for this purpose
(Nakajima e al., 2003).

For the physical signal acquisition of sub-vocal
speech, a non-audible murmur microphone is used which
is build based on the research work presented in
(Nakajima et al., 2003; Heracleous ef al., 2003, Toda et al.,
2009).

The processing steps of NAM signals to develop
silent speech interfaces 13 based on the theory of
voiced-speech for the construction of Automatic Speech
Recognition systems (ASR). Hence, the processing steps
are applicable for NAM recogmtion with certain
modifications.

The construction of ASR systems, takes into account
3 major phases which are related to the extraction and
analysis of the characteristics of the speech signals the
classification and pattern recognition and the utterance
verificaion of words recogmzed by the system
(Douglas, 2003; Tshii et al., 2011).

Since, it is intended to make an approach to the
development of an ASR system applied to non-audible
murmur it is used as first phase implementation of
algorithms based on frequency representations for the
characterization of thus class of signals. The research
presented by Ishii et al. (2011) and Toda et al. (2012)
show the importance of implementing Fourier analysis
systems in sub vocal speech.

According to, the ideas presented above in this
study we describe the development of a set of algorithms
for extracting implicit characteristics in NAM signals to be
used as recogmzable elements m subsequent pattern
recognition tasks for identification of specific
phonological units (Rabiner and Schafer, 2011).

This document is organized as follows, In the
second part, a description of the acquisition and signal
pre-processing task forsubvocal speech is made. The
thurd part, describes n detail the feature extraction task for
data processing and subsequent clustering for possible
applications n the construction of a silent speech ASR
system. Finally, a description of the processing tool is
made and the conclusions and future research are
condensed.
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MATERIALS AND METHODS

Speech processing: Speech processing systems have
been studied for a long time. The methodology used for
the construction of speech processing systems 1s based
on the classical theory of signal processing which exploits
the frequency analysis as the main analysis tool.
Implementations related to classical speech processing,
can be applied to silent speech signals as shown in
(Babani et al., 2011; Fan and Hansen, 2011; Denby et al.,
2010). These conventional systems represent a start point
to base the development of silent speech interfaces.

The state of the art related to the implementation of
voice signals processing, shows that Fourier analysis is
the main tool used in this kind of systems. For this reason
the development of an acquisition and processing system
based on the frequency representations of signals 1s
proposed. Figure 1 shows the general diagram for the
acquisition and signal processing of the sub-vocal
speech task.

Figure 1 are defined 3 important processes that
conformthe signal characterization steps for silent speech.
The first stage 13 referred to the transformation of the
acoustical silent speech signal into atreatable variable in
voltage terms this is performed using a, specially adapted
microphone which enhance the acquisition of silent
speech signals this is called NAM microphone.

In the second stage we have the process of the ADC
conversion and calculation of the frequency components
of the signal. To do this a dsPIC is used to sendthe
processed data to a computer via. the TEEE 802.11b
protocol. The frequency representation of the signal
calculated by the dsPIC, enters to the third stage which is
responsible for conducting the treatment of the data to
finally allow the user to graphically verify the results of
the feature extraction and calculation.

Acquisition system and pre-processing: As mdicated
above the first two stages summarized in Fig. 1

correspond to the acquisition and pre-processing of the
signal through a NAM microphone and a dsPIC,
respectively.

NAM microphone: The acquisition of silent speech 1s a
big challenge in order to build ASR systems for unvoiced
speech. The NAM microphones were developed as an
alternative to acquire accurately silent signals. Hereby,
NAM microphones are the result of multiple research
works (Heracleous et al., 2003; Nakajima ez al., 2003,
Toda et al, 2009). These works defined a modified
structure of a stethoscope using an electret microphone
and its diaplragm. In order to make a system for
acquiring and processing silent signals, we proposed
the development of a prototype of the NAM
microphone. To do this a pediatric stethoscope and an
electret microphone were used. The configuration and
modification of the stethoscope are depicted in Fig. 2.

After construction of the microphone, a signal
conditioning stage was made to standardize the output
voltage values of the microphone within the operating
range of the ADC module used by the dsPIC. This
conditioning step was performed usmg a simple
amplification, constructed from a transistor configured as
an amplifier mode.

FFT calculation: The first processing stage of the silent
signal acquired through the NAM microphone is
performed using a Digital Signal Controller (DSC). The
device used is a dsPIC30F4013 that has a 2 kB RAM
memory and a 48 kB program memory. Tts maximum
operating speed is 128 Mz with a maximum of 32x10°
instructions per second.

The DSC used is employed for digital conversion of
the analog signals from the NAM microphone. A 12 bit
resolution and a sampling frequency of 2 kHz is reached.
The sampled data are storedin the RAM of the controller
to then calculate a 128 samples FFT. This means that the
FFT is performed every 64 msec to generate a FFT ata
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Fig. 1: General diagram for acquisition and processing
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Fig. 2: NAM microphone structure

frequency of 15.625 Hz (Proakis and Manolakis, 1996).
Calculating the fast Fourier transform is performed using
the Cooley-Tukey algorithm and is embedded i the dsPIC
using the defimiton summarized n Eq. 1 and the
optimization concepts presented in:

(1)

The transformation of the 128 samples, generates a
bandwidth between O and 1 kHz with a total of 64 bands.
This relationship indicates that each value calculated by
the FFT is separated each 15.625 Hz in the bandwidth
making this value the minimum measurable frequency for
the FFT.

The resulted spectrum is then transmitted through
one of the UART ports of the dsPIC at a rate of 115200
bps. The mformation of each FFT calculation 1s packaged
in blocks of 66 bytes and then transmitted. Wireless
transmission of samples is implemented with a Wi-Fi
comnection to a computer using a 36 XBee node. The
XBee module 1s configured with a specific port and IP
address to manage the Wi-Fi networle. The XBee module
has a maximum range of 30 m which represents portability
and convenience in the acquisition task.

Signal post-processing: Following the methodology for
developingthe silent speech processing system which is
summarized n Fig. 1 18 proceeded with the construction
of the mterface for visualization of the spectrum data
supplied by the dsPIC. This 1s solved desigming auser
interface application in C # language. The resulted
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Fig. 3: Magnitude spectrum (FFT)

post-processing tool allows to read and store data
transmitted by the D SC, allocating them in memory spaces
in order to achieve a real-time processing of information
displaying the result of the magnitude of the FFT and the
corresponding  spectrogram. A first view of the FFT
calculation 1s depicted in Fig. 3.

Figure 3 illustrates an mstant sample of the calculated
FFT, however, the depicted data 1s not clear about the
temporal information associated to the frequency, making
it necessary to complement with a sequence of readings
of the FF'T. A possible approximation to resolve this 1ssue
is the use of the concept of the Short-Time Fourier
Transform (STFT) also known as the spectrogram of a
signal. The STFT is a graphical way to show the spectral
trends of a signal (in this case) of sub-vocal speech. The
spectrogram is a 3 dimensional graph in which the x-axis
15 the time axis, the y-axis represents the frequency
spectrum and in its last axis 1s condensed the power of
each spectral component, represented by color intensity
in grayscale (Oppenheim, 1970). The graph shown in
Fig. 4 shows the spectrogram calculated using the user
interface for the phrase “Military University” m terms of
silent speech.

As a complementary form of study, the software
performs other calculations and estimations of parameters
for creating features to be used in a posterior stage for
identification that may be applied to speech coding,
speaker recognition, automatic speech recogmtion, among
other kind of speech applications.
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Fig. 4: Spectrogram

The smoothed line in Fig. 4 represents the spectrum
envelope of the signal in the frequency domain. The
envelope 1s the average value of the magmitudes of the
spectrum, condensed through the FFT either for each
instant of time or for each of the samples.

RESULTS AND DISCUSSION

Parameters calculation: One of the most notable
difficulties of identifying patterns is to achieve that each
pattermn be comparable repeatedly. In the case of speech
this 1s an important feature to take into account given that
the pronunciation of the letters, syllables or phonemes
generally vary from performance time, power or volume.
This the reason to implement techniques to try to
standardize and sumplify the patterns in as many features
as possible.

In order to enhance the feature extraction process for
frequency representations of speech the software
umnplements the following strategies:

FFT windowing

FFT average

FFT derivative
Harmonics detection
Harmonics normalization
Spectrogram gradient
Spectrum binarization
Temporal normalization

To implement suitable algorithms to perform the
calculation of the parameters listed above 13 used an 1mitial
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sample spectra set of values, allocated by a sample vector
which comprises 64 instantaneous values of power of the
FFT send by the dsPIC. Each of the values of the power
spectrumis distanced from each other 15,625 Hz. The
container vector of such information 1s defined as shown
mEq 2

P |
¥
i [kT]=| 2)
P e
P 5 |
Where:
fit*[kt] = Vector, groups each of the FFT samples
P = Represents the power value of the b band on

the k sample that is acquired at aT time

FFT windowing: The characteristics of the Fourer
transform, make the first components related to the lower
frequencies of the signals to have large values with
respect to high frequencies. This particularity is due to
the representation of the zero levels in the signal when no
dynamic behavior exists on thuis (Jurafsky and Martin,
2000). The condition explained above, requires to find a
method to minimize the large components of the spectrum
that are not part of the dynamic behavior of the speech
signals.

Windowing is the operation used to normalize the
high frequency data that is found in the signal. For the
application presented in this study, a linear window was
used and is defined as presented in Eq. 3:

w[b]: (3

[ Ces |

Where:
¢, =3 ({1-1)20, fori=7

¢, =1, fori>7

The window defined in Eq. 3 mitigates inversely
proportional the first seven spectrum bands. The
implementation of the window is performed by multiplying
term by term the window coefficients and each of the
values of the FFT samples. This operation raises a new
defimtion of normalized vector as shown in Eq. 4:
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The spectral differences between a wmdowed
FFT and the FFT without treatment i1s depicted in
Fig. 5.

Spectrum average: The data of each new sample FFT is
averaged to generate a new statistical and pattern feature.
This new data is annexed to the vector as one raw
element. The definition of the vector is shown in Eq. 5:

P
P:
Pu
fit[kT]= : Q)
Paae

64
prk _{ZP1KJ/64
i=1

Sub Vocal Speech Pattern (PHSV): The Sub-Vocal
Speech Pattern (PHSV) is formed by a finite number of
FFT samples which are set up as a matrix of 65 rows and
L columns, corresponding to the length of the pattern
data:

pZ(k—L) (6)
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Fig. 5: Magmtude spectrum; a) FFT without treatment
and b) Windowed FFT

Under the PHSV concept is possible to represent the
silent speech signals features as an array with the
windowed spectral components and the phoneme
duration. The graphical representation of a specific
example with a pattern is depicted in Fig. 4. Where the
spectrogram represents a pattern of the silent speech.

Derivative of the FFT: The derivative of the FFT 1s
calculated by a simple method that determines the
algebraic difference between samples this concept is
described by the following relation Eq. 7:

7p1k P
Pax P
A(ER[ET]) | PucPoran 1)
T

For practical purposes in the calculation task, the
value of the period (T) of the signal has the value of 1.
This assumption does not alter the proportions of the
derivative.

Graphically, the derivative of the FFT 1s depicted in
Fig. 6 wherein the yellow curve represents the derivative
of the FFT.

The b pomts defmed mn Eq. 7 correspond to the
values wherein the derivative has zero crossing, causing
a change from a positive value to a negative value and
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Fig. 6: Derivative of the FFT
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determining harmonic components in the signal.
Conveniently small changes in the results of the
dervative, allow to identify false harmonic frequencies
whose amplitudes are lower than the true harmonic
magnitudes. To avoid this undesirable situation, the
algorithm makes an inspection of the calculated derivative
and the harmonic values to rejectthe false data located far
from the bands with high magnitude. This process is
performed iteratively on the calculated vector, evaluating
harmonic frequencies neighborhoods for each spectral
point.

Harmonics detection: The harmonic detection task, aims
to identify the fundamental frequency and remove similar
mformation of the spectrum, since, during the execution
of the speech, the response of the FFT results in 64 bands
but the number of harmonics may range from 3-6 as
observed in the experimentation.
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Fig. 7: Detection of harmonics

To identify the harmonics in each signal sample, the
FFT 1s assumed as a sequence of values that are part of
the signal. This condition makes the search of the
harmonics becomes the search for maximum values of this
signal. Given the basic principles of optimization that
allow to find the maximum and minimum points of a
function through its derivative, the search of the highest
value 15 performed by taking the derivative of the signal
and identifying the zero crossing of the derivative. This
mathematical action becomes an equivalent form of the
derivative equal to zero.

Through the optimization calculations mentioned
above the algorithm can detect the specific points or
bands where the harmonics are present. This feature
extraction method allows the harmonics to be used as
features in future identification architecture. A graphical
example with the identification of the harmonics of a
signal is shown in Fig. 7.

In Fig. 7, the harmomcs are highlighted with black
bars on the spectrum. The harmonics with lower
amplitudes canbe discarded by a threshold decision
parameter set by the user in the interface. In the same case
of study, summarized by Fig. 7 the average power of all
bands is 86 and represents a characteristic of the signal.
The value is represented in the Fig. 7 as the horizontal
purple line.

The calculations and features mentioned at this point
are continuously performed every 64 msec m order to
create the sequence of spectrums to construct patterns. A
continuous acquisition of sub vocal speech is displayed
in the spectrogram depicted in Fig. 8.

Based on the results presented in Fig. 8 the sub-vocal
speech pattermns can be represented as grayscale images.
For a future comparison of patterns and its identification
1t 18 necessary that the characteristics of the patterns to
be similar, 1.e., whose dimensions are similar in the same
manner that its contrast.

Spectrogram gradient: The interface allows to maripulate
the directional derivation on the pattern image. This 1s
achieved by calculating the gradient vector at each of the
pixels in the spectrogram image for each of the signals.
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Fig. 8: Continuous spectrum
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The implementation of this method allows to
highlight varations m a pattern independently of its size
or other characteristics. Any way to complement the
gradient operation on the images, the patterns are
normalized using contrast correction. In Eq. 8 the
unplemented mathematical structure to calculate the
gradient is shown:

Jphsv
Gk
Uphsv(k,b)=| K |-
dphsv | | Gb
cb
G =~+CGk*+Gb’

Gk=(z+27,+z,)-(z,+2z,+7,)

Gb={z,+2z,+z,)-(z,+22,%z,)

Donde,

z, phsv(k -1,b-1) (®)
,=phsv(k,b-1}

,=phsv(k+1,b-1)

, =phsv(k-1b)

z —phsv(kﬂ b)

z,=phsv(k-1,b+1}
z,=phsv(k,b+1}

z —phsv(k+1 b+1)

Significantly, the new gradient image is implemented
with the magnitude of the gradient vector in each of the
pixels (Gonzalez and Woods, 2007 ). Figure 9 shows the
visual representation of the result of the gradient
operation on the spectrogram of the “Military Umiversity™
phrase.

Tmage contrast: The contrast of an image is a parameter
that determines what proportion of the color depth 1s

1K

500 + - ‘-h"..-
o .

Frequency (Hz)

taking advantage. In the specific case of this development
every pixel on the spectrogram is encoded in a gray scale
with possible values from 0-255, where 0 represents
absolute black and 255 absolute white color. An image
with high contrast or maximum contrast has content in
their pixels values distributed in all possible values of
gray while a low-contrast image occupies only a portion
of levels, discarding the other possibilities (Gonzalez and
Woods, 2007).

One same pattern can be represented by 2 images
with different contrasts. This difference of contrasts
makes difficult to correctly identify the features this can
be explained as when we calculate similar vectors but with
different magnitude values.

Figure 10 presents 2 patterns representing the phrase
in sub-vocal speech, “Military University” with different
contrasts, the audio level have a correspondence with the
speaker volume.

The manipulation of the image contrast of the
spectrogram becomes a normalization of the volume of the
features this modification allows the patterns to be similar
in terms of this variable.
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Fig. 10: Contrast comparison
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In Eq. 9 is presented the mathematical relationship
that can correct the contrast according to the image
recorded in the matrix, thus, the new array is the
normalized volume pattern matrix.

255

hsv*(k,b)=| ———————
P ( | ) {phsvmax_phsvmin

J(phsv(k,b) -phsv, ) (9)

In Eq. 9 the phsv max parameter is the highest value
of the pattern and phsv min the corresponding minimum
value (Gonzalez and Woods, 2007).

Harmonics normalization: One of the most important
characteristics of the speech patterns 1s the fundamental
frequency. This is defined as the first harmonic value in
frequency of the spectrum. In speech signals, the position
of the first harmonic in the spectrum varies depending on
various characteristics such as age of the person, gender,
mood, state of stress or relaxation, etc. However, the
differences between harmomcs tend to be the same,
meaning that a normalization of the patterns according to
the first harmomnic 1s useful to increase the similarity
between patterns.

To achieve this purpose to normalize patterns i this
development, the position corresponding to the first
harmonic is assumed as reference and the other frequency
bands are moved respect to the first harmonic. This
process 1s performed using the Eq. 10:

phsv**(k.b)=phsv(kb-b,) (10)

where, phsv **represents the normalization of the first

harmonic or fundamental frequency pattern In the
mathematical relationship it can be seen that this new
pattern is merely a displacement which is calculated using
the high amplitude values mn the search of the maxims
(Gonzalez and Woods, 2007).

Figure 11 shows the results of the normalized sample
(Fig. 11b) and the original sample (Fig. 11a), taking as
parameter the first harmonic of the phrase “Military
University”.

Binarization of the spectrum: In order to simplify the
number of features to calculate the user can apply the
operation of binarization of the spectrum. This option sets
a threshold within the range of the possible values of the
image generated from the spectrum when a pixel value
exceeds the threshold magnitude the algorithm sets the
color value of the pixel to the absolute black and
otherwise to the absolute white. Figure 12 depicts the
main differences between a binarized spectrum (Fig. 12b)
and an original spectrum (Fig. 12a).

Temporal normalization: The pronunciation of phonemes
when the speech 1s performed 13 not the same all the tumes
and the duration of the phonological units is short. The
length of a sentence can change in a matter of fractions of
a second but in a digital system for processing data this
condition is critical, since, processors cannot differentiate
durations. To overcome this draw back and to model all
patterns in a similar way the length of the patterns 1s fixed
in a number of samples for this case 64 samples were
chosen m order establish a square matrix of 64x64 for
the 1mage as normalized standard pattern. If the
pattern 1s longer than 64 samples, the data 1s compressed
and in the contrary case is expanded. The changes
between expansion and compression are performed by a
rule of 3.

User interface: The processing options described above
are mtegrated in a unique application software developed
in C # language. The resulted interface allows to connect
the XBee device through a UDP network to obtain the
FFT samples.
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Fig. 11: Harmonics normalization; a) Original spectrogram and b) Normalized spectrogram
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Fig. 13: User interface

The interface shows the FFT samples acquired from
the dsPIC, also allows to perform the calculation of the
spectrogram and the features mentioned through this
study, providing to the user the control of the variables
and the processing characteristics of the algorithm. The
algorithm 18 a robust tool to analyze and represent the
principal frequency characteristics of the silent speech
signals. A general illustration of the interface is depicted
in Fig. 13.

CONCLUSION
Throughout this research, a detailed description of a

set of different algorithmic tools for calculating signal
features for silent speech was performed. Accordingly, it
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is made clear that the purpose of processing this kind
of information 1s oriented as an aid i the task of
pre-processing for use in posteriors complex systems
such as the type of ASR, speech coding, speech and
audio watermarking, speaker
others.

identification, among

The features observed i the sub vocal speech
patterns have slightly noticeable differences, an example
of this situation can be seen with the vocal patterns where
the outcome 1s lughly similar. To achieve differentiation in
the patterns are recommended the use of phrases or
words.

Aiming to improve the characteristics of patterns is
possible to implement the calculation of a high resolution
FFT this condition would mnprove the detail acquired in
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each sample but in tum would require the use of a DSC or
DSP with higher speed and capacity, since, the dsPIC
used in this development is at its maximum capacity.

The relationships observed between the images of
spectrogram and audio features can be highlighted that
the contrast of the image is proportional to the volume of
the audio the audio features can be normalized using
gradient image and expand the contrast of the image.

The images of the spectrograms, denote curved
shapes and geometric figures that can be analyzed in
subsequent tasks in order to perform pattern recognition
with the aid of the algorithmic tools discussed in this
research.
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