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Abstract: This study presents two traimng schemes of three deep convolutional neural network architectures
applied to object recognition, based on the depth information supplied for a 3D camera. For this case, the depth
information allows to make the set of training images of each network, its architecture and its characteristics,
generating a dynamic recognition application by variation of the image capture point. The best scheme 1s
selected to add a weighting layer with saturationn for obtain a final architecture that recognize objects to

different distances with a 91.69% success that mean a maximum error of 8.31%.
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INTRODUCTION

Inrecent years, deep learning techniques have led the
field of artificial intelligence (Schmidhuber, 2015) and
presenting developments in various fields of science and
engineering. Tts ability to recognize patterns allows
applications from the analysis and extraction of
characteristics of large amounts of data (big data)
(Zhang et al., 2016) to new control systems for vehicular
traffic (Fadlullah er al., 2017). In relation to this last
application, specific techniques of deep learning such as
(CNN), allow the

unplementation of artificial mntelligence systems based

Cenvolutional Neural Networks

on images for example, the detection of pedestrians
(Orozco et al., 2016).

The CNNs have been validated in their high capacity
of learmng based on mmages (Krizhevsky ef al, 2012)
either in grayscale or in color and have become popular in
this field. They have a basic structure of consecutive
layers of convolution, linear rectification and pooling
(Zeiler and Fergus, 2014a, b) which allow the generation
of very deep learning architectures (Qain et al., 2016).
Thus, one of the current fields of application of CNN is
the development of robotic agents based on artificial
intelligence for example for tasks of recognition of places
that may lead to autonomous navigation by the robot
(Mancim et al., 2017).

The control of robotic agents through artificial
mtelligence systems has been under development for

several decades within the objectives that it seeks are the
autonomy and precision in the execution of tasks for
example n product assembly processes (Warczynski,
2000) or cleaning tasks (Hossen et al., 2017). By means of
convolutional neural networks by Yang ef af. (2017), it 1s
presented a robotic humanoid development capable of
performing natural tasks for a human such as the folding
of garments, thus, illustrating the scope of this deep
learning technique in robotics.

The generality of robotic activities 1s presented in
three-dimensional environments with exceptions such as
the planning of trajectories in a plane. Applications with
robotic arms, very common in the mdustry, require
mampulating the gripper in three-dimensional space and
positioning them according to the task to be performed.
By Redmon and Angelova (2015), a development is
presented by convolutional networks for gripping tasks
by means of a robotic gripper without including aspects
such as the depth of the object.

In general, there are not many developments in the
area of robotics associated with applying convolutional
neural networks in tasks that nclude depth data mn a 3D
scene. Some of the developed developments address
different aspects for example by Porzi ef al. (2017), a new
convolutional network model is developed that integrates
the depth information which allows to discriuminate
objects spatially with direct applications in robotics. By
Wang et al. (2016), it is presented an approximation to the
work shown in this study where an RGB-D signal 1s used
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which represents a color image plus the depth information
of the scene with which objects are segmented into the
image and then captured by a robotic gripper.

In this study, it is presented a proposal for the
dynamic recognition by means of convolutional neural
networks for cases where the image capture point
variation occurs, ie., the RGB-D sensor goes i the
robotic agent and 1t moves. The above raises the problem
of change of perspective of the object to be
recognized, thus proposing a solution not found in the
state of the art.

MATERIALS AND METHODS

CNN architecture: The solution proposed consists of the
training of a convolutional neural networlk specialized in
the different perspectives of the object to be recognized,
depending on the depth in which it is, i.e., the
training of a set of neural networks 1s realized where each
one will leamn to recogmze the object from the distance
and will be activating each network as it approaches the
object.

Two options are proposed for validatiory, the first
consists of a pre-trained convelutional network that
through learning transfer, allows to obtain a generic
network that will be trained according to depth
information, under each perspective of the object. In this
aspect, there will be determined three convolutional neural
networks of the same characteristics that will be
trained with different database given by the distance
perspectives of the object. The second option consists n
determining each of the three architectires of the
convolutional networks independently.

Transfer learning CNN architecture: For applications of
object recognition in images, different CNN architectures
have been developed, ranging from the most basic that
comprise only a convolution layer and a layer of pooling
(Porzi et al., 2017) to very deep architectures with up to 19
convolution layers. Where different combinations of
convolutional layers, Rectifier Linear Unit (RELU) and
pooling layers has been used.

In a previous development, a convolutional network
was obtamed for tool discrimmation of five different
categories, whose efficiency was 96% 1n the prediction,
the associated architecture 1s shown in Fig. 1.

Its configuration of 2
maxpooling sets and a convolution-maxpooling set
feature learning stage. The complete architecture is
shown in Table 1 where S is the stride used, the
input consists in color images of different sizes but

consists convolution-

normalized by resizing to 64x64 pixel. Under this
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Fig. 1. CNN architecture employed for transfer learning

Table 1: CNN architecture

Layers Kernel Filters
Input 64x64 -
Convolution 10510 (8=1) 10=10
Convolution 15%15 (8=1) 15x15
Maxpooling 252(8=12) 2x2
Convolution 1010 (8 =1) 10x10
Convolution 10=10 (8 =1) 10=10
Maxpooling 2x2(8=2) 2x2
Convolution T=T(§=1) T=T
Maxpooling 2x2(8=2) 2x2
Fully-cormected 1 256
Fully-connected 1 -
Softmax 5 -
Table 2: Images database

Net/Depth Screwdriver Nippers Pliers
1/20 cm 100 100 100
2/40 cm 150 150 150
3/60 cm 200 200 200
architecture which allowed discriminating between

scissors, screwdrivers, cutting plers, pliers and the
category “others”, the prediction of two types of tools
with image captures at different depths was validated as
shown in Fig. 2. It can be evidenced that as the object
approaches, it does not manage to be identified for this
case a 43.2% error is obtained in the prediction.

Because the pre-trained network presents a high
performance in the recogmtion of tools, it 1s used as the
basis to carry out the learning transfer task where for each
of the three networks trained by transfer uses the umage
database illustrated in Table 2.

The difference n the amownt of images used by each
network according to depth is determined by the amount
of characteristics that the filters must learn m training, the
closer the image the less variations are found.
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Fig. 2: CNN response to different depths Prediccion: a)
Screwdniver, b) Destornillador; ¢) Scissors, d)
Others; e-f) Nippers and g-h) Others

Table 3: Architecture based on depth
Architecture

Name/Type Kernel Filters
ARQ1

Convolution 1010 (8=12) 10-10/50
Max pooling 8x8(8=2) 20-20
Convolution 5x5(8=2) 30-30
Maxpooling 10x10(8=12) 40-40
Fully-connected 1

Softmax 5

ARQ2

Convolution 26x26(8=12) 10-10/30
Maxpooling 6x6(8=2)

Convolution 6%6 (8 =2)

Maxpooling 6x6(8=2)

Fully-connected 1

Softmax 5

Max pooling Sx5(8=2)

Convolution Tx7(8=3)

Fully-connected 1

Softmax 5

CNN architectures based on dept: For the second option,
three architectures were implemented to test their
performance in depth recognition. The structure shown in
Fig. 1 is maintained for the network oriented to recognize
from far (60 cm). The other two architectures have the
structures shown in Table 3.

The differences in the architectures are due to the
complexity of the learning that each of the networks must
handle according to the amount of information in the
image. The greater the distance from the image capture to
the object, the more information enters to the network
which must clearly discriminate the object from the
background, for example, a big part of the background will
be taken which must be discriminated from learmng with
respect to the object.

CNN architecture training: Each of the implemented
architectures was trained with the mput dataset shown in
Table 2 where that was set in 80% data and 20% of
validation. To analyze the training behavior of each
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Fig. 3: Training results of transferleraning method: a)
Traming architecture 1; b) Traming architecture 2
and ¢) Traimng architecture 3
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Fig. 4: Training results of based on depth method, a)
training architecture 1; b) Traimng architecture 2
and ¢) Traimng architecture 3

architecture, it was evaluated the relationship traming
accuracy vs. epochs. Figure 3 illustrate the resulting
traiming behaviors of architecture 1-3, respectively for
transfer learning and Fig. 4 illustrate the same result but
for architectures based on depth. In Fig. 3 and4,
it can be seen that architecture 1 had a faster learning
curve than architecture 2 and 3 due to the fact that
architecture 1 only visualizes the segments of
objects and a background’s small part. On the other
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Table 4: Training time (min)

Table 5: Prediction error

Cases  Architecture 1 Architecture 2 Architecture 3 Prom
TL 5.20 617 7.22 6.29
BD 3.13 4.08 7.22 4.81

hand, architecture 3 recognize complex patterns of feature
maps, hence, this can be evidenced in its delay in begin to
learn due to it must discriminate the background from
the object mn this case in a greater proportion. However,
the three architectures achieved a 100% training accuracy
in their trainings for which in practice, it is what is
expected to ensure that the network will achieve an
efficient performance in the task to which it will be
destined.

Likewise, it is evident that the complexity of the
architecture and the learning object regarding the
mnage, affect the trammg tme. For the
architecture 1 requires half of training epochs that

case,

architecture 3 needs as can be observed in Fig. 4. Table 4
shows the training time needed in each option, Transfer
Learning (TL) and Based on Depth (BD) where the last
was faster.

RESULTS AND DISCUSSION

In order to determine the performance of each
architecture, the predictive capacity by scenario is
evaluated, according to the depth of the image capture,
case A by learming transfer and case B by individual
design of each convolutional networl. In Table 4, it can
be seen the error rate obtammed which m general allows to
conclude that case B gives the best recognition at
dynamic depth with less training time and a simpler
architecture.

The results shown in Table 5 are obtained from the
individual validation of each network. Because the
development functionality is oriented to dynamic depth
change where the prediction must be performed in real
time, a final joint architecture is used with a weighting
output layer based on the depth of capture in the input
image. Figure 5 illustrates the final convolutional neural
structure used.

The additional weighting layer generates a weighted
sum of the individual responses of each output of the
networks of the final architecture as a function of depth,
according to Eq. 1. This weighting was set analytically for
the development of the present research:

pczi (140 ) /(n-d) (1
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Error rate (90)

Cases  Architecture 1 Architecture 2 Architecture 3 Prom
TL 12.67 10.72 6.6 9.99
BD 10.56 7.87 6.5 831
Table 6: Result of screwdriver by depth identification

Depth (cm) Architecture activated Weighting
60 3 10
30 2-3 5.66
20 1 10
20 1 10
Where:

P, = The prediction by category

n = The number of networks that have the final
architecture (3 for the case)

O, = The output of each network by category

d = The normalized distance of the RGB-D capture

camera to the object

For the case, the normalized distance 1s taken as the
distance in centimeters of the camera over the minimum
distance that distinguishes (20 cm).

The saturation function used which 1s observedin
the output layer in Fig. 4 becomes necessary because
the exponent in Eq. 1 tends to infinity when the
corresponding network 1s activated, the upper saturation
limit is 10 and the lower is O.

In Fig. 6, it can be seen the result of the prediction of
the convolutional neural architecture designed, based on
depth. Tt is appreciated that the images used are
satisfactorily recogmized when the RGB-D camera is
approached towards the objects of mterest. In this case,
the error is reduced to 8.31%.

Where for each column of Fig. 6, the depth catch ratio
1s shown m Table 6. In it 13 observed that for the traming
distance values the output 1s saturated whereas for
intermediate values it is weighted by the respective
activations For example, for a distance of 50 cm, the
resulting weighting is 4.74, derived from the activations of
the Architectures 2 and 3 which without becoming
saturated their value exceeds the value of the other
classes.

The obtained results are demarcated by the range of
coverage projected for a didactic robotic arm whose
dimensions allowed to set the depth ranges of Table 2.
They were also delimited by the RGB-D capture camera
used 1 this case, a Blaster Senz3D creative whose 3D
vision range 18 from 0.2-1.5 m. Both devices can be seen
inFig. 7.
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Fig. 5: Final architecture used
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Fig. 6: Depth-based CNN response; Prediction: a)
Screwdriver; b) Destormillador; ¢-d) Screwdriver
and e-h) Nippers

Fig. 7: RGB-D camera used and robotic arm

CONCLUSION

The two types of novel architectures proposed
present a solution to the problem of identifying objects
using dynamic systems that vary the distance of capture
of the image. Although, the first proposed option
employs robust convolutional neural networks, its
performance 1s lower than that of the second option with
distance-adjusted networks, due mn part to the traming
scheme, since, the learning transfer delivers convolution
filters mitially more complex than the required for the
identification of an object at a short distance.

The final architecture developed presents an overall
functicnality of a conventional convolutional neural
network, however, adding a weighting output layer
empowers the network for its application in cases of
mobile robotics through machine vision systems,
transparently to the user.

The decrease in the error rate in the identification of
the tools from different perspectives allows to conclude
the effectiveness of the established architecture, however,
the final layer is susceptible of being modified by other
layers that fulfill the same purpose as it can be a diffuse
inference layer.
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