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Abstract: The role of € value in Data Envelopment Analysis (DEA) is obvious for DEA researchers and
improperly determining this value leads to unfeasibility/infinity of multiplier form/envelop in DEA problems.
Thus, Al and Seiford in 1993 suggesting a bound for £ claimed that 1t would prevent unfeasibility/mfimity of
multiplier forms/envelope of DEA problems. Mehrabian in 2000 rejected the validity of the boundary and offered
another boundary for € in CCR and BCC Models of DEA and further, determined assurance value for under €
special terms. Assigning € value in network structures may cause encountering unfeasibility/infinity of
multiplier forms/envelope challenge. Therefore, the purpose of this study is to determine & boundary in network

structure and to define € assurance value.

Key words: Network Data Envelopment Analysis (NDEA), Decision Making Units (DMTU), epsilon, assurance
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INTRODUCTION

DEA imtially mtroduced by Charnes ef al. (1978) 1s an
important tool to evaluation demos known as CCR
(constant returns to scale). Banker et al. (1984) extended
it to variable returns to scale known as BCC. These
methods evaluate a number of decision-making units in
which units consume similar mputs to produce similar
outputs. In traditional DEA to measure the relative
performance of the unit under evaluation, the system
considered as a black box ignoring its mnternal processes.
Such models faced with the challenge of zero weights or
close to zero weights; thus, remove some inputs or
outputs or the little effect on units” assessment. There are
several methods dealing with such a challenge one of
them 1s identifying lower boundary as weights” Epsilon
non-Archimedes. However, improper allocation of ¢ leads
to unfeasibility of multiplier form and then the infinity of
envelopment form in DEA. In  this regard,
Mehrabian et af. (2000) and Toloo (2014) proposed a
boundary for £ mn traditional DEA. In real world, most of
the evaluated decision-making units include internal
processes. The models that stress on internal structures
for assessing DMUs called network structure-based DEA
models  represented by NDEA symbol (Fare and
Grosskopf, 1996). Imtially used the term network
structures. The overall state of the network DEA models
are classified into series, parallel and public groups.
Structures conmected n series are known to model series
network structure. One of the most widely used network
structures are the two-stage networks of which Kao and
Hwang (2008), Fukuyama and Weber (2010) and Tone and

Tustsui (2009) research can be pointed out. Parallel
network models suggest parallel structures behavior in
which divisions connected m parallel mode, Kao (2009)
works can be noted in this regard. In real world, most
public decision-making umits have public network
structure, Tone and Tustsui (2009) and Lozano (2011)
work on envelopment form and Kao (2009) research on
multiplier form can be noted. It seems that in the NDEA
models, particular work has not been done to determine £
assurance interval.

The purpose of this study 1s to mtroduce a model
determiming & value range and ensure the feasibility of
multiplier form and consequently the bounded envelope
form of public network structures. In what follows,
Chapter 2 reviews the literature to determine € assurance
interval and value in traditional DEA model and multiplier
form with networked structure. Chapter 3 reviews Linear
Programming mathematical model to determine the value
of € assurance interval and assurance value in NDEA. A
numerical example 1s given m Chapter 4 determimng the
value of € assurance mterval in NDEA. Finally, last
chapter concludes the results.

Literature review: As mentioned in mtroduction, CCR
and BCC models face with the unfeasibility/infinite
multiplier forms/envelope challenge of DEA by assigning
inappropriate values for lower boundary of weights (g). In
this study, to deal with this challenge, methods for
determming & assurance interval and the maximum
assurance interval are expressed m traditional DEA.
Moreover, multiplier procedures for the public network
structures are explamed.
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Determining € assurance interval and confident value in
DEA model traditional: Tn many studies on CCR and BCC
in DEA meodels, both models include nen-Arclhimedes
mfinitesimal & Theoretically, & mtroduced as lower
boundary preventing zero weights influence assessing all
inputs and output units. Some problems in showing
mfinitesimals arise due to finite tolerance of computer
calculations. To solve the problem of zero weights, Al
and Seiford (1993) offered an upper boundary for
feasibility of multiplier models and bounded envelope
models CCR and BCC as follows:

CCR BCC

Max UY, MaxUY, + U,

VX, =1 VX, =1 (1
UY, - VX, <0,j=1..,] UY -VX,+U, €0,j=1..,]
Uzel,Vzel Uzel, V2el

where, 1 is a vector with all 1 components. He provided
the following theorem for the upper boundary of £.

Theorem: For CCR and BCC models when: (x;, x,) = (x,, X;)
j=1,... I

For e<1/mn{37 x|, CCR and BCC models have feasible
multiplier form and optimized value
For e>1/ma{¥7 %}, CCR and BCC models are infinite

However, Mehrabian et af. (2000) offerng a
counterexample rejected his claim. They also showed that
£ depends on the output viewed values. Then, a model
was also provided for finding assurance iterval of
non-Archimedes €. To do this, they considered CCR
Model (Eq. 1) for DMU, evaluation and presented the
following model to determine the maximum amount that €
can adopt to ensure the feasibility of multiplier form of
CCR:

P : Maxe
st VX, =1 UY -VX <0,j=L..] (2)
Uze-l Vel

Mehrabian et al. (2000) showed that model 2 1s
feasible and has a fimte optinum solution. Besides, they
introduced assurance interval for feasibility/bounded
multiplier form/envelope form of CCR Model for assessing
DMU, in term of (0, g,"] where, g," is the optimum solution
of Eq. 2 introducing sharing of all assurance intervals to
evaluate all DMUs as overall assurance interval € = min
e, ., &' (0, €']. Mehrabian et al. (2000) demonstrated
that the optimum solution of the following model equals
optimum solution of model 2:
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ED:Maxs
st VX, <1,
Uzel, V2el

UY, - VX, €0, j=1..J (3)

In addition, £ assurance value obtamed from the
following model:

P :Max €

SLVX €L j=l..]
UY, - VX, <0, j=1..J
Uzel V>el

(h

They showed that the absolute amount of € in
model 4 1s no larger than the upper boundary of the
assurance interval. Moreover, i BCC, the assurance
interval and assurance value of non-Archimedes £ was
introduced by Toloo (2014). He showed that & of BCC
model 18 the upper boundary of CCR model £.

NDEA multiplier models: Many researchers presented
multiplier model for network structures, as mentioned n
the mtroduction. Kao (2009) introduced the multiplier
model of DEA for network structure extensively for series,
parallel and general states and showed how to convert the
system with an overall network structure to a series
strtucture in  which each process has a parallel
structure. Matin and Azizi (2015) introduced the
integrated NDEA Model to measure the production
systems’ performance and showed that the model
presented by Kao (2009) 15 a special case of the presented
model. Kao mtroduced the public network structure by a
particular example so that each unit consists of the third
divisions (Fig. 1).

In Kao example, system main inputs and outputs are
X, and X, and Y,, Y, and Y5, respectively. Division 1
consumes some of X, and X, values for producing Y, so
that a part of Y, remains for division 3. Division 2
consumes a specific value of X| and X, similar to
division 1 and a part of Y, for division 3.

Division 3 consumes residual of X and X, along side
the parts produced Y, and Y, resulting from divisions 1
and 2 for producing Y,. Assume that X;* indicates the ith
input of division k (k = 1, 2, 3) from DMTU. Particularly,
total inputs of three Divisions (3" + 3% + ™) for
system mputare x, § =1, ....j,1= 1, 2). It means that (3
+ X%+ X,™). The output of division 1 is separated as Y",,
Y™, where, Y, is the system final output and Y%, is the
value consumed by division 3 as an input.

Similarly, output of division 2 is Y®, Y, where, Y,*
1s the system final output and the consumed amount by
division 3. Accordingly, YO +Y®, =y, r=1,2,7=1....,].
Multiplier medel of public network structure are shown in
Fig. 1.
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Fig. 2: A two-step network structure, each stage has a parallel structure
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EU:MaxulYl(UU)-#—u2 e Y,

st VXt VX, =1

(ulYlj(n) + quz(j”) +u, Y, ) f(lelj + v, X%, ) =0, V]

Y, - (vXy v <0, v 5)

2 2 .
WY, —(VIXEJ) + vzxg)) <0, Vj

+u, YV

11y

3 3
u3Y3] —(V1X£])+V2X(j)

2z

+u, Y <0, v

u.u, 1.V

=
127722752 15’V27S

where, 1 indicates the allocated weight to rth output (r =
1,2, 3) and v, 1s the allocated weight to the 1th mnput (1 =1,
2) used for measuring system performance DMU,; of each
process. As observed mn model 5, X, mput weight 1s
always v, no matter to be used by division 1 for X"
input, division 2 as X%, or division 3 as X", or that Y,
output weight is always u, a no matter to be used by
division 3 as mput or to be the final output of the system.
Other indices are i a sunilar condition. Kao also revealed
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that every public network structure could be converted
nto a two-step network structure through introducing
dummy Divisions, where each stage has a parallel
structure. When synthetic Divisions 4 and 5 presented as
Fig. 1 structure, we will have (Fig. 2).

According to Fig. 1 and 2, division performance point
and procedures obtained from following relationships:

EW = u Y,
Ty vy
Bl Z u, Yy,
b ey

(6)

)

B =w Y, /(viXE + X e u v+ u vl

¥ br(3) *ar (D) P
B u Y, o+ (V1Xm +v, X5 )+ u, Yy
VX VX
b (0 sl *
o_ u Y, U, Yo Yy
o * *. 3 *3 *
Y, + (V1X§n) TVt Y,

EI
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So that according to Eq. 6, the total performance is
equal to the product functionality of two stages, in other
words:

E,=ELxE}
MATERIALS AND METHODS

Determining the assurance interval and an assurance
value of € in network DEA models (NDEA): As mentioned
in introduction, presenting inappropriate € unfeasibility/
mfimte multiplier forms/envelope create challenges in CCR
and BCC models of traditional DEA. Similar to traditional
DEA states, 1t 1s also possible to face with thus challenge
in NDEA models. The introduction of the feasibility €
assurance interval for multiple models NDEA-CCR wlich
covers bounded form NDAE CCR, seems necessary.
Therefore, it is necessary to introduce assurance interval
£ for feasibility of multiplier models of NDEA-CCR and
subsequently bounded envelope form NDAE CCR.

P, =Max ¢
stov, X, Tv,X,,

(

Yy - (vXE v XD <0, vi

=1

0 .
u1Y1(J Y, v+ uY, ) - (VIX1j +v,X,; ) <0, vj

(7
Y, (v v X <0, v
Y - (v v X e u Y u v < 0, v

u,u,,u,,v,,v, £

Therefore, this study seeks to find assurance mterval
and its assurance value for £ to ensure the feasibility of
multiplier form and bounded envelope form NDAE CCR.
To find £ upper boundary (assurance mterval) m model
NDEA-CCT for DMU under evaluation, the followmng
model is applied. On the other hand:

1
LU,V =] 0,0, 1
« )[ . }

1s a feasible solution for model 7 in which 1 1s the vector
with all scalar components, meaning that model 7 is
feasible. Now, we show that model 7 has finite optimum
solution.

Lemma 1: Prove the optimum value of model 7 is positive
and finite.

Proof: First, prove that model 7 15 finite. For thus purpose,
assume that (e, u, v) 1s a feasible solution for model 7.
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Then, vze.1. On the other hand, non-negative inputs
values results in vX,zelX,. If the first constraint of
model 7 is applied, we will have €<1/(X,;+X,;). Besides,
non-negative outputs and constraint Uz el will result UY,
>elY, Moreover, according to constraints of the second
series in model 7, inequality obtained and according to
constraints of the second series of model 7, we get
inequality e<1/Y,*4Y,"4+Y,,). Similarly, the inequalities
e<1/Y,; and e<1/Y, achieved considering divisions
constraints. Therefore:

1
ﬁ+ﬁ+%’

1

%)

YIU YZD

£< min 1 s
X+ Xy

Now, we show that model 7 has an optimum positive
solution. Considering that:

€U, Vi=| 0,0, a1
21X‘n

is a feasible solution for model 7, optimum solution of
model 7 is non-negative. Therefore, it required to show
that the optimum value of model 7 could not be zero.
Assume that (assumption by contradiction) the optimum
value of model 7 is zero; then, consider dual model 7:

D,:min8

st w +w,+2 +z,+z, =1
J I J
X0 - ZXIJ i ZXE)BJ _ZXEJZ)'YJ _ZXEJB)pJ -w, =0
1=1 =1 1=1
NERIIE SRWEINEE )
X0 ZXZJG'] =GB - Xy - ) X —w, =0
=1 =1 =1 =1
O‘L + 2
)
Yo, + ZYZJVJ -z,

0‘!+2

GPBPmpPW'W'z 2,,2,20,0, ,j=L..,]

- 514

=0

H M‘—-

(8)

Considering the optimum values of primal and dual
models, we have: 8 = 0. Substituting 8 in the constraints
of the second and third constramts of dual models, we
have &; = 3, = y; = w,= w; = 0, further, substituting results
in the next dual constraints z, = z, = z; = 0 achieved. The
obtained results are on the contrary to the first constraint
of the dual problem. This proves that contradiction
assumption is invalid. Thus, the optimum value of primal
problem 1s positive. Now, the following defmitions
determine assurance interval and assurance value in
NDEA-CCR.
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Definition 1: Assurance interval for feasibility of
multiplier form NDEA-CCR to evaluation DMUO is defined
as (0, €'] where €" is the optimal value of model 7.

Definition 2: The intersection of all assurance interval for
feasibility of multiplier form NDEA-CCRfor the evaluation
of all DMTUs defines the overall assurance interval (0, £']
with € = min {e", £} . According to Definition 2, to
determine the overall assurance interval, T linear
programming model should be resolved. Tf the number of
inputs, outputs and DMUs were large, the number of
operations for finding the above assurance interval would
be extremely high. To fix this problem, linear programming
will be mtroduced. Introducing the proposed model to
determine the wide assurance interval, only a linear
programming model is solved that is important in terms of
computing. Introducing proposed model, following cases
are necessary:

Theorem 1: The optimum solution of model 7 is similar to
the following optimum one:

P =Max & st vX,+v,X, <],

o 1] .
(U1Y1(, y quz(J) + uBYBJ) —(VIXIJ +v, X, ) <0, ¥j
ulY (v x4 VZX(;J.)

1945

)50, vj
. 9
w, Y, — (v X+ v X <0, v ®)

v, Xm +v X(j-) +

WY, — <0, ¥j

3

uY()+u YU

u,u,,u,,v,,V, 2 €

Proof: Consider the dual of model 9 as follows:

D, :min@

st w +w,+z+2,+z;,=1
J J J J
1 2 3
X, _ZXIJOLj - ZXEJ)BJ' _ZXEJ')’YJ' —EXEJ-)DJ- —w, =0
i=1 i=1 i=1
IR SR RN E)
KD~ 2X2] i EXZJBj 72X(21 ¥ 72X2Jpj —w, =0
i=1 =1 i=1 =
J (D) J J
2 o+ Y, B -z =0, ZYZJa +2
1=l =1l 1=11
J
Z )

oL B 1.0

1 Ot + 2Y3Jp1

=il

W, W,.7,,7,, 7,

820, j=1..]
(10)
According to Lemma 1, we have 0:0. Then, the
feasible space of model 8 1s as feasible space of model 10.
Therefore, models 8 and 10 have optimal solutions and
identical optimal wvalues; and the identical optimum

solutions and optimum values result in models 7 and 9.
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The proposed model: When (g,’, u,", v,") is the optimum
solution of model, to specify the overall assurance
interval according to definition 2, € =min {g,’, 0 LT
I models solved requiring higher computations. In this
part, the following model introduced for determining the
overall assurance interval that eliminates the problem of
much computation:

P, = Max &
sloviX+v, X, 51, V)

(

u Y, - (vX v X <0, i

uY()+u2Y2()+uY

174 3 73

J=(viX, + VX, ) <0, 9

(11
Yy, - (v v X ) <0, i

{3) (3)
Wy VIX11 +v2X2J +

33_

(n n =09
ulY1J +u2Y2J

u,u,,u,v,v, 2 €

12722 73 12

In what follows, the above proposed method is
represented with NDEA PZ. Assume that (e”, U”, V'),
is the optimum solution for model NDEA PZ; then, we
have £”<g".

Theorem 2: The optimum value for model NDEA PZ 1s
always positive.

Proof: Proof using reductio ad absurdum is performed on
the dual problem of the model NDEA PZ similar to
Lemmal.

Theorem 3: Considering the presented symbols of € and
£" and single-member setas T={j:vX, +v,X, =1} = {t},

wehave g =g

Proof: Consider the model NDEA PZ dual as follows:

J
D, :minzej, st w,+tw,+z t+z,+z; =1
=

J ] J
X8 ZXIJ i ZXE)BJ 7EX£JZ)YJ 72X513)p1 —w, =0
i=1 =1 =11 =il
X,,6- ZX o, ZXZJB EXZJV ZXZJ p,—w,=0
i=il

]
PR EDRT:

1=l =il

: 0
¥ vl +2Y21y =0
=1 =il

]
Z 3 ]+EY3]D

O, Bj: Yis Py Wi, Wy, Z), Zy, Zj:e] 20, j:L...,J (12)
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Assume that j#t, v, X, +v, X, <1, j=1,.., I, according
to theorem of complementary slackness 1n the
optimumsolution of model j#t, BJ“ =0,7=1,..,], )%t Thus,
0.° 1s the optimum value of the following problem:

D,:minf,, st w, +w,+z, +7, +z, =1
I J I J
1 2 3
Xy _EXMaJ _EXEJ)BJ - ZXEJ)YJ _EXEJ)pJ —w; =0
1=l 1=l 1=1 1=l

J J J J
1 2 3
X = )Xy, _ZXEJ)B] - Zx(zj)Yj - EXEJ-)DJ —w, =0
=1 =1 1=1 1=l

I
NY, 0+ > Y,p 2z, =0
i=1 j=1
O, B ¥ P WL W, 2, 2,2, 0,20, j=1.]
(13)

Moreover, this problem i1s the dual of model 9 mn
assessing DMU, with the optimum value €. Therefore,
g =g

For finding the greatest non-Archimedes, € value for
the feasibility of multiplier model or in other words, model
NDEA PZ 1s applied for the overall assurance interval for

the problem NDEA-CCR.
RESULTS AND DISCUSSION

This study presents numerical examples of the
overall assurance value impact on the performance of
decision-making umts. For this purpose, £ wvalue
calculated using NDEA PZ. Then, Kao’s model
unplemented in two cases without value and with the

Table 1: Input/output data of Kao example in the vear 2009

overall assurance value on decision-making units data.
Next, the performance results of these two cases
compared with CCR performance value. Finally, the results
of the two-state performance compared to CCR traditional
performance.

Example 1: Consider five decision-making units A, B, C,
D, E with three divisions related to Kao example (Kao,
2009), the structure of each decision-making unit shown
in Fig. 1. The corresponding inputs/outputs are listed in
Table 1.

According to the data shown i Table 1,
implementing model NDEA PZ the overall assurance
value will be equal . Thus, the overall assurance interval
18 (0, 0.0344828). Table 2 shows the results of Kao (2009)
model m two modes without value and with overall
assurance value alongside the traditional CCR Model

As Table 2 shows, using € assurance value in CCR
Model, Unit A converts from efficient mode to inefficient
mode and the performance scores of wnits C, B dropped.
In addition, using the assurance value € in NDEA-CCR
Model, the performance scores of all units reduced,
though, ratings of units are still constant.

Example 2: Consider the example of 24 Taiwanese
insurance companies extracted from Kao (2008) study in
which the structure of each is similar to Fig. 3.
Inputs/outputs of insurance companies are listed in
Table 2.

Implementing model NDEA P7Z on data of Table 3
gives us the overall assurance mterval &” = 1.04573x107
Thus, the overall assurance interval 15 (0,
0.0000000104573] Kao implementation results are listed
(2008) in the following two modes:

DMU Process X, X, T,o ¥, Y0 b Y.
A 11 14 2 - 2 - 1
1 3 5 2 2 - - -
2 4 3 - - 2 1 -
3 4 6 - 2 - 1 i
B 7 7 1 - 1 - 1
1 2 3 1 1 - - -
2 2 3 - - 1 1 -
3 3 1 - 1 - 1 1
C 11 14 1 - 1 - 2
1 3 4 1 1 - -
2 5 3 - - 1 1
3 3 7 - 1 - 1 2
D 14 14 2 - 3 - 1
1 4 6 2 1 - - -
2 5 5 - - 3 1 -
3 5 3 - 1 - 1 1
E 14 15 3 - 2 - 3
1 5 6 3 1 - - -
2 5 4 - - 2 2 -
3 4 5 1 - 2 3
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Fig. 3: Network structure of the insuarance operation system

Table 2: Comparing 5- DMU systern performances independently calculated through ordinary Model CCR, Kao model and the model presented here

DMU E CCR E CCR * EN kao EN ¢
A 1.0000 0.9266 0.5227 0.4744
B 0.8980 0.8832 0.5952 0.5895
C 0.8485 0.7377 0.5682 0.5209
D 1.0000 1.0000 0.4821 0.4706
E 1.0000 1.0000 0.8000 0.7931
Table 3: Input/output table of Kao, case study: Taiwanese insurance comparnies in 2008
DMU Operation Insurance Direct Reinsurancepremiu ~ Underwritingprofit Investmentprofit
expenses (X1) expenses (X2) writtenpremiums (Z1) ms (Z2) Y1) Y2
DMU1L 1,178,744 673,512 7.451,757 856,735 984,143 681,687
DMU2 1,381,822 1,352,755 10,020,274 1,812,894 1,228,502 834,754
DMU3 1,177,494 592,790 4,776,548 560,244 293,613 658,428
DMU4 601,320 594,250 3,174,851 371,863 248,700 177,331
DMUS 6,699,063 3,531,614 37,392,862 1,753,794 7,851,229 3,025272
DMUé& 2,627,707 668,363 0,747,008 052,326 1,713,598 415,058
DMU7 1,942,833 1,443,100 10,685,457 643,412 2,239,593 439,039
DMUS 3,789,001 1,873,530 17,267,266 1,134,600 3,800,530 622,868
DMU9 1,567,746 950,432 11,473,162 546,337 1,043,778 264,098
DMUI10 1,303,249 1,298,470 8,210,389 504,528 1,607,941 554,806
DMULL 1,962,448 672,414 7,222,378 643,178 1,486,014 18,259
DMUIL2 2,592,790 650,952 0,434,406 1,118,489 1,574,191 000,205
DMUL3 2,609,941 1,368,802 13,921,464 811,343 3,609,236 223,047
DMUL4 1,396,002 988,888 7,396,396 465,509 1,401,200 332,283
DMULS 2,184,044 651,063 10,422,297 740 893 3,355,197 555,482
DMUL6 1,211,716 415,071 5,606,013 402,881 854,054 197,947
DMUL7 1,453,797 1,085,019 7,695,461 342,489 3,144,484 371,984
DMUL8 757,515 547,997 3,631,484 005,620 692,731 163,927
DMUL9 159422 182,338 1,141,950 483,201 519,121 46,857
DMU20 145,442 53,518 316,829 131,920 355,624 26,537
DMU21 84,171 26,224 225,888 40,542 51,950 6491
DMU22 15,993 10,502 52,063 14,574 82,141 4181
DMU23 54,693 28,408 245,910 49,864 0.1 18,980
DMU24 163,297 235,004 476,419 644,816 142,370 16,976
Mean 1,544,215 828,963 7,832,893 667,964 1,602,873 477,733

Table 4: Comparing the efficiencies of 24 insurance companies in Thailand independently calculated through ordinary CCR, Kao Models and the model

presented here

DM E CCR E CCR © EN kao Rank Kao EN ° Rank NDEA PZ
DMU1L 0.984 0.978 0.962 4.0 0.913 2
DML2 1.000 1.000 1.000 1.5 0.805 5
DMU3 0.988 0.970 0.936 5.0 0.894 3
DMU4 0.488 0.488 0.488 11.0 0.450 12
DMUS 1.000 1.000 0.979 3.0 0.599 8
DMUs 0.594 0.588 0.390 15.0 0.403 14
DMU7 0.470 0.467 0.374 17.0 0.325 17
DMUS 0.415 0.415 0.295 20.0 0.293 20
DMU9 0.327 0.327 0.280 22.0 0.262 23
DMU10 0.781 0.772 0.705 9.0 0.582 9
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DMU E CCR E CCR * EN kao Rank Kao EN “ Rank NDEA PZ
DMUI11 0.283 0.277 0.283 21.0 0.266 22
DMII12 1.000 1.000 0.714 8.0 0.711 7
DMU13 0.353 0.351 0.337 18.0 0.320 18
DMIUI14 0.470 0.468 0.394 14.0 0.362 15
DMU15 0.979 0.972 0.737 7.0 0.729 6
DMUle 0472 0.472 0.321 19.0 0.320 19
DMU17 0.635 0.633 0.427 13.0 0.420 13
DMII18 0.427 0.426 0.385 16.0 0.345 16
DMU19 0.822 0.821 0.487 12.0 0.480 11
DMII20 0.935 0.934 0.850 6.0 0.848 4
DMU21 0.333 0.333 0.268 23.0 0.268 21
DMII22 1.000 1.000 1.000 1.5 1.000 1
DMU23 0.599 0.598 0.580 10.0 0.579 10
DM1I24 0.257 0.256 0.172 24.0 0.167 24

Without any value
+  With overall assurance value

In this table, the second, third, fourth and sixth
columns are results of implementing traditional CCR_ €
models without overall assurance value, traditional
CCR_ e with overall assurance value, lattice without an
overall assurance value and lattice with the overall
assurance value obtained from model NDEA PZ. The fifth
and seventh columns are units’ ratings m lattice models
without overall assurance value and with overall
assurance value.

The results of Table 4 show that applying an
overall assurance value changes the efficiency of
decision-making units. According to the fifth column,
overall —assurance value of
decision-making umts will not be thoroughly rated. Whle,
the seventh column suggests that applying an overall
assurance value led to full rating of decision-making units.

Kaomodel without

CONCLUSION

Network DEA models are sensitive to selecting the
amount of €. Therefore, inappropriate selection of € leads
to unfeasibility of multiplier form NDEA-CCR or
underestimating the inputs/outputs. Thus, it requires
precisely selecting € value in network DEA models.
Besides, to avoid finite tolerance in computerized
calculations, 1t 1s recommended that in addition to using
double precision, £ value calculated by model NDEA-PZ.
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