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Approximation by Regular Neural Networks in Terms of Dunkl Transform
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Abstract: Dunk] operator here we introduce a modified version of and use it to prove a theorem shows that

functionals and rth order modulus of smoothness m K-theorem shows thatare equivalent. We use this
equivalence to introduce p<1 spaces for L, (K) essential degree of approximation using regular neural networks

and how a multivariate function in spaces for can be approximated using a p<1 spaces for L, (K) multivariate

function in forward regular neural network. So, we can have the essential approximation using regular FFN. P<1

spaces for L, (K) ability of a multivariate function in spaces for using regular FFN.
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INTRODUCTION

There are many papers introduced about the
direct and inverse theorem for the approximation by
neural networks called the upper and lower bounds of the
rate of approximation. See for example (Konovalov et al.,
2009, 2008; Maiorov, 2003, Maiorov and Pinkus, 1999, Xu
and Cao, 2004), we call the degree of the asymptotically
identical upper and lower bounds, the essential rate of
approximation.

If we have a continuous function with multivariable
and compact domain subset of there exist a feed Forward
Neural Networks (FNNs) as anR" approximation for it.
input units, 1 hidden and one cutput units can’ The FINNs
with 3 layers nd written as:

Nn(x):gclo(<oqjxj>+ 81) 1)

xeRYLd=1

are (;,, W, ..., W) € R'is the thre shold, 6, e R 1<iz m
where in the hidden layer with input neurons,’ connection
weights of neuron with the output neuron and * are the
connection strength of neuron ¢, €R is the sigmoidal
activation function used in the network.

In many studies of approximation theory of functions
the K-functionals play an important role. The study of the
relation between the modulus of smoothness and
in the
approximation theory. For many types of mduli of
soothness these problems are found in Dai (2003), Ditzian
and Totik (1987), Lofstrom and Peetre (1969) for example.

K-functionals is an important problems

Recently in mathematical papers a new class of
generalized translations was described and put into use,
namelya generalization of Dunkl translations. The
generalized Dunkl translations are constructed on the
base of certain differential-difference operators (the Dunkl
operators) which are widely used in mathematical physics
(Dunkl, 1989; Rosler, 2003).

Here we use rank d dunkl operators for functions of
d-varables. The mamn amm 13 in to mtroduce an
equivalence of K-functionals and the modulus of
and p<l, L, (k) smoothness using rank d dunkl
operators  for prove

inverse estimation and saturation problem for the using a

functions.  we direct and
p<1 spaces for L, (k) approximation of multivariate
function in spaces for using a forward regular neural
network .

Notations and definitions: Let R be the real line, R® be
Euclidean space of d-dimensional for natural (d>1) and let
k be any subset of R? .

Definition: Let K be a multiple cell in d-dimension
Eucliden space R’ (d=1), the L(k) space for p
<1ldefined by:

1

[ @

L =L (Kj={f:K—>R;

b

We mean bye a real value satisfies q>-1/2. The
modified Dunkl operator is a differential-difference
operator D which satisfies the condition.
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Df (x)

[OH

The action of the operator D is defined for all functions
fel, (k) where L (k)={feL fel,(K)} Note that: any even

3)

function feL}(k) satisfies the equality:

D = Bf )
where L (k)={f<L_(k)} and:
2 2 2
Bf(x):afz afz___af2+ 20+1 of
dgx, ox,"  ox, X, OX, (s)

20L+18_f
ax

2(1+18_f
d

X 2 Xy Y

S ien

1s the modify differential Bessel operator. Let j& (x) be the
Bessel function of first kind:

2T (e +1)j,(x)

o

X

(6)

Jalx)

that defined as the solutions to theBessel differential
equation (Bateman and Erdely1, 1974):

dy , dy 7
H 2 2 —
@+Xa+(x —Ot)yfo 7
Let us introduce the following exponential function:

g, (x)=1,(x) (8)

The function e (x) is the generalized exponential function
comcides with the usual exponential function ¢*. We
define a generalized exponential multivariable function as:

E,(x)=e,(x))e,(x;).e.(x) (9

The operator Df is defined for any function fe L, (k). One
can define the operator of the generalized modify Dunkl
translation T" f(x) 1 various ways. For a function feD one
can define the operator of the generalized modify Dunkl
translation u (x,y) = T7 f (x) as a solution of the Cauchy
problem (Salem and Kallel, 2004)
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Du(xy)=(%y),u(x,0)=f(x) (10)

where D, and D, are the Dunkl operators applied with
respect to variables x and y, correspondingly.

One can extend the operator T by from a subset
DcL, onto the whole space L, (k). The extended operator
1s also denoted by T°.

Definition: Tthe r-th order difference of function feL, (k)

A;f(x):(lfTh)rf(x),x =x,
XppnX EKLRENad h >0

(11)

Byl we mean the unit operator. If r a positive integer the
rth module of smoothness can be defined by:

sup
o (f,8)L_,. =m(f,8) =
)L =0 08), =) _hcs (12)
AT p.8>0,f6 L,
Let w; be the Sobolev space generated by D, i.e.:
Wi ={fel :Dfel,j=12..1} (13)
Where:
’f
le(x): (JX)_
o x (14)
9 (x)

o, ot e

Definition: The K-functional on the spaces L, and
w; defined by:

K(f,t;w;):inf{HfngpHHD‘g (15)

|
pg'ij

where fel, (K), t=0

Definition: we denoted by the Lipschitzian class Lip (¢),
defined by the space of all functions f in L, (K) spaces
satisfies w, (ft), = o (t%), where O<g<r

Remarks:

Here, we study the approximation using neural
network with activation functions j, of which each
function 6" R~ [0,1] has up to k+1 order continuous
derivatives. K=1,2,..., k+1

The regular neural activation functions are the normal
sigmoidal activation functions o (x) = 1/1+e™ for
positive
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Any neural network whose neural activation

functions are regular (satisfies the conditions of part
1 of tlus remark) will be called a regular neural
network.

Definition:
“Let r be an mteger number and:

P.(x)=ax' xe[a,b]C (16)

(==22)
be a homogeneous univariate r degree polynomial:
MATERIALS AND METHODS

Some properties of the modified dunkl transform: The
modified Dunkl transform is the integral transform:

Fif(x)>f(h)=[ fE hekK
where:

EQ(KX)> :_[Kf(xl,xz,...xd)
E, (A x. A, A, )dx,,dx,,. dx,

(17)

The inverse of the formula of modified Dunkl transform 1s
as follows:

Fligh) »fx) = c_[gEot

whrere:

o

B (X,

(M),

X

)= [ ek 2y)
X )dll,dlz,...dld

(18)

22’

where ¢ is a constant and k = k,xk, <.k, with A,c K, A, €
K,...A €K,

Lemma: let fel,, (k) then the following equality is true for
any €R:

T'f =E_{Ay) (19)

here, -1 1s modified Dunkl transform:

Lemma: For real number x the following mequalities are
satisfied:

le.(x)|<1and the equality is attained only

withx = 0
|1fem(x)H£ 2|x‘ (20)
For a given ¢»0 and [zl we have [l-e,(x)2¢ As a

corollary of above Lemma 3.3 we have:
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Lemma: The following inequalities are satisfied:

x)[<1 ey
1-E,(x)/<c (22)
1-E,(x)zc where [¥/21 and ¢ is a positive constant.
Proof: part 1:
B eax o), () e, 23)

lfea)l-feufx

and by the above Lemma 3.3 part (1) we havele, (x)[<1
then we obtain|e, (x)/<1:
|1—Em(x)‘:‘1—eu(x (24)

el (%, )---%(Xa)|

and by part (1) of this lemma [E,(x)|<1 and part (2) of

Lemma 3.3 we obtain:

1-E,(x) <c (25)
part (3) : by the part (3) of lemma (3.3) with [x|z1 :
We get|1 - Ea(x)‘ > ¢,since|x| =sup 26)
f, o],
Lemma: Let <1, (K) then [aif] <e(p)[f],
Proof:
1
nt], —(J.K(ITh)rf(x)pT (27)
L
I
(Lo-rmyee 8
Lemma 3.4 part (2) we get:
1
AL ) SC((I,I",p)[_[K|f(X)p)F éc(p)”f”p (29)

Lemma: If a function belong to the sobolev space W then

D'f =1"f(x) (30)

c(p)tx D\f .

Lemma: Let,ew,.t>0 then w,{f,8) <
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Proof: Assume that 0<h=t Lemma: If feL, (K} then:
A (x)=(1-T*) £ (31) |&—p4fmpg4pﬂp;jm,v>o (40)
Proof:
the difference with h as a step. Properties (3.2) yield: let|1 ~E, (t)‘ > c(p)with‘t‘ >1 (41)
1
el B r 2 (32) i 9
AL, —[L\(l E, ()] £(x)) I -p. (6], =f Jr-x. (e ()7 (42)
and Lemma yield: . %
1 || 1-%, (%) (43)
D] _[L () (33) € ((1fEa(M/v))r)(lem(M/v))rf(r)
implies the equality: p %
_ Sup J‘ 1-%, (»)
i _}L K K - r - r
el ] LB gy F T an SEL (1B (7 v)) (1 Eg (a7 v)) f(x)‘
Wl K (;\‘h)f (44)
<c(p)|Al.f ) (45)
. . A et P % (35) Corollary:
pif] =h (M(l‘ B, (s)) )s™A'F(x) )
It —p. (£)], Sc(per(£.17v), (46)
using Lemma 3.4 for any s we have:
Lemma: The inequality
‘(17Em(s))r s <e(p) (36)
D’(pv(f))Hp <c{p)vi||ALf j (47)

then Relations give:

Is true Proof : using correlation we obtain:

1
HA;pr =< c(p)h'(IK‘lrf(X)‘P)E (37) .
I (. (D), [ [ ACOTIE) SN

and Relations give:

(38)

Af]| =<c(p)h’|D'f
p p | A 2. (M) (49)
taking the supremum on he (0,t]. we get. we obtain : ((17Em(}”1/V))r)(leoc(M/V))rf(X)‘
(x)x(f,fﬁ)p < c(p)t'“D'f”
Remark: For any function f€L,(K} and v>0 define the Not that:
map: sup(Ax,(A))  visup(M/v)
p(F)(x)= [ Fx)E, 39) sek  Psv (50)
(x)dh =, O (x) =B, (mrv)[ I-E (/)
where X, (%) is the characteristic function of [-v,v] . Then, formula yields:

936
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v'Supt”
EES! (51)
1B (0

v Supt”
Lt _ |t =1 , (52)

|1 —e,(t)

Corollary:

| (p. ()], £ C(p)Vier(t.1/v), (53)

Equivalence between k-functionals and r-th modulus of
smoothness in terms of dunkl transform for neural
networks: Our mam result of this section 1s:

Theorem: For any function £€L,(K).8>0 then

o(p)m,(£.8), = Kr(f,S‘)F

(54)
Sc(p)mr(f,S)p
Proof : proof of the inequality:
c(p)(ﬂr(f,S)p < Kr(f,B”)p (55)
Lethe (0,8],gc W,
1
A —[IK A;(f—g)+g‘p)p (56)
I - P -
s[ J (5 el [ [y 6D
using Lemma and Lemma we obtain:
a7
ALl <c(p)(] |F-g )+
“ T (58)
C(p)hr{'l'k: D'g F)F
||f 7g||p +38"|D'g ) (39

take the supremum on O<h<® and the infimum on any
function g=w}

We obtaimn:

937

cnr(f,S)p Sc(p)m{(fﬁ)p (60)
proof of the inequality:
Kr(f,Sr)p <c(p)w, (£.8), (61)

We have, p,(f)sW, so using K-functional definition
to get:

K, (£:8) <[r-p,(£)] +1] (62)

D (p, (1)),

Using Corollaries and. Let us proceed with inequality:

Kr(f,B‘)p Sc(p)(nr(f,llv)p

(63)
+a(p)(dv) (nr(f,lfv)p
since, v be any positive value, letus, ,_1 .
3,
WegetKr(f,Br)p <c{pjo.(£.8), (64)
-#—c(p)é‘)r(nr(f,é‘))p
Kr(f,S‘)p <o(p)w, (£.8), (65)

The essential order of approximation using regular
neural networks: XU Zongben and CAO Feilong proved
i [13] the following result “Let [a, b] be a compact
interval, g€), be a regular neural activation function and
pex)a homogeneous univariate polynomial of the form .
Then for any,e>0, there 13 a neural network of the form
(1.1) the number of whose hidden units is:

not less than {r + 1) such that

N, (x) P (x)] <2 ©0

As a direct consequence of above lemma we mtroduce the
following theorem ™.

Theorem: “For any regular neural activation function gej,
and a homogeneous univariate polynomial p, (x) and a
given €0 we can find a neural network with form :

with not less than r+1hidden layers (67
satisfies HNn (x)-p, (X)Hp

Proof: Since, o¢j, be a regular neural activation function
and p, (x) a homogeneous univariate polynomial then by
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above lemma we have for any €>0 there is a neural
network of the from the number of whose hidden units is
not less than (r+1) such that :

AX) PR < (68)

N, (x)-p.(x) )

= <) -p. (x)f < Lp (69)
Jo N () = () {u(k)”p}

=1,

N, (x)-p.(x)[ )" {L(u(k)“’}) P70

=,

SARENT ‘{L(W}) -

S a)-p o] (e )
(1/p)y/ ((u(k))T(UP))

(72)

=]

Nn(x)fpr(x)Hp <E (73)

Tn this section we construct an FNN to realize universal
approximation to any integral multivariate functions in L,
(K),p=<1 we will use the Bemstein-Durnmeger operation as
base tools .

Definition: Let K be any subset of R* the Bernstein-
Durremger operater B, in L. (T) defined by :

ank(x)q)nk(f) (74)
(Binf)(a):‘k‘in

where, xeK, fe L, (K) and:
dui (£)=(n+d),, [ Py (u)f({u)du (75)
Lemma: If f€L, (k) for p<l then:

|B.f ], <c{p)e (£.1/m), (76)
Proof :

B.f —f| <e(p)K, (f.1/n)"), (77)

Lemma: “Tf for If £€L (k) for p<1 then then:

mr[f,lj<c(p)iBlf| (78)

n pr o

o (£.8) =o,(f ~B,f + B,f.8) =

o(p)o,(f ~B,£.8)+ o (B,f.8) < (79
c(p)Hf—an +]

Bn(f)iBU(f)iBn(f)iBZ(f)*» (80)

(B, — 1)) +..+(B,(f)-By(f))

J—mr(anyé‘a)—m{iBZi —Bzi—l,Z'l} (81)
P

i=1

1
—m{EBZi —f+f—le_1,2‘1] (82)
1=1 b
£c(p)2(1:1)1 f*B(Z‘)f (83)
p
< C(p)E(;:1)“ f- B1f||p (84)

Bf -], (85)

e (£,8)<e(p) X o

To mtroduce Lemma 5.6 we need the flowing notations:
(Xu and Cao, 2004). Lezit be the set of all non-
negative multi-integers in R*:

Foranyx = (X;,X,,....X, )€ R’

andk =(k.k,....k )€ Z%,Let

(86)

k

d d
_ _ kE_ _k kd
= 3 x, k| = B xE =
1=1 1=1

andk! =k, 1k,! k!

(87)

We say that x<y, forany veR’, iff xi<yi for any 1<i<s. For
any fixed point p. Let:

_ptrd-l
*od-1
Be the number of multi-integers i=(ii..-+i ) in Z d/+ that
satisfy:
(88)

Jitd et e =P
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Let:

ptd-2

d-2

41 in that

+

be the number of multi-integers j={jL j2....jd)inz
satisfy:

Bitis ot o =D (89)
Denote by jy,+L1<l<l a generic multi-integers j in
2", satisfing h+h+-+hi=p. The f1,1<N, a generic
multi-integers j in Z*',satis{ing;

=(Lj).1<1andp®’
1
2(1+p)

P
(90)
pLl<l<N,

For any 1zl«N, Lei®=(p-|jl.jl} then each if'=p is

multi-integer in z% that satisfies |i®|=p . Define:

P

(o)

I}

i

i (91)
p=01=1

we then have \J, 1 forany 1<1<N_” The flowing lemma
provides an eclul alent expression of Bermstein-durrmeyer
operator B,.

Lemma: “For any, € L(T) the Berustin-Durrmeyer
operator B, in can be expressed as:

B.fx) = 3 3P, py (92)

p=011

where, {x,p® Y

¢} is inner product x and p{.d" are uniquely

determined by:
(i) () (jne)”
()7 )" (iw)”
G G ()™
(93)
d i®) CQP)(f)
d(ZP) _ 2(1+n)P} i(zp)! C(ZP)(f)
: p! _
o) e c(N’%(f)
NP
®)(py—_ 1 e -
¢ (f)= D, (f 1t q
1 () (n_p)!qg@) ,q( )q!(igp)—q)‘( )1 ‘
(94)
pﬂ 201130( <ng)>+0),Kp2p+l (95)
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Remark: We observe that in expression (5.7) each term

x,pi homogeneous uniriate
polynomial of (x,pf“)> with order p and so by
Theorem 5.1, it can be approximated arbitrarily by a
network of the form.

can be viewed as

Remark: As B.f(x) can be approximate f, the following
neural networks:

)=3¥e ofo,, (xp (96)

o)
p=01=1

Then, can approximate f to any accuracy. The network
will be the FNN models we propose use in this paper. The
network are clearly of from (Eq. 1) and contain hidden
units where:

m =Ny, kN, +..+k N 7)
>Ny + 2N+ ..+ (n+1)N, (98)
a k+d-1
—Z(kﬂ){ ! J—mo(n) (99)
k=0 d-1

RESULTS AND DISCUSSION

Theorem 5.11 ( The Direct Theorem for Approximation
of multivariate function in L (k) spaces for p<1 by
forward Regular Neural Networks): For any
feL,k).p<1 there is a regular, one hidden layer FNN, N, (x)
of the form (1.1) with ogj, and the hidden unit:

number and satisfies:

mzi(k+l)[§+flJ—mo(n) (100)
k=0 -
N, -1, <c(p)mr[f,jl] aon)
P

Proof: we assume feL,(k) Then, by Lemma 5.6, the
Bemstein durrmeyer operator B, fcan be defined
and expressed as:

(102)

pﬁ”))p

and furthermore, it approximates f in the following sense:
Lemma:

=33

p=01=1

1

g

b, —f], <c(p)mr( f (103)
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and by remark (5.9) part 1, we have:

1
f,—
n

an|,;s~e(p)8nff||pw{ ] (104)
P

Theorem 5.12 (The inverse estimation for the
approximation of multivariate function in L (k) spaces for
lusing a forward regular neural network): For any,
feL,d).p<1l there is a regular, one hidden layer FNN, N,(x)

of the form (1.1) with o€ j, and the hidden umnt:
1

e
r

k+d-1
d-1

(105)

mz (k+1)
k=0
number such that:

(106)

c(p)m{f,

Proof: we assume fel (k) Then, by Lemma 5.6, the
Bemstein-durrmeyer foperator B, can be defined and
expressed as:

B.f(k) = > 2o (xpf Y (107)
p=01=1
and since ol g% we have (x,pf,“J>sl :
(—1 < <x,p§“)> < 1) (108)

Each term (4 @} in (5.7) is univariate homogeneous
polynomial of (X,pl(")> with order define on. Now by
Theorem 5.1 we have <x,p,(“)>p can be approximated by
neural networl:

NF
Ng, :Zl"P“’(%(&Pg )>*9)= (1.09)
G, 0 € RK, 2p+1
With accuracy :
P
HNKF ~(xplM}| = (110)
b
Then for constructed FNN:
My chG((D Axpt +9),
N, Sy Yy ( > ain)

p=01=1 1=1C

2@ E R 2p+]

940

and we have:

N, — £, =[N, f - B.f £ (112)
n p n n D

<|NE - B,f| +]B,f 1] (113)
n n p n p

+ [N~ Bf], (114

<c(p)mr[f,rllj

P

The term |N.f-Bf|, in above can be arbitrarily small,
because (5.13) and (5.14) imply:

for)

n I
IN.E-Bof], =3 3

kp
p=01=p P- clpc(colp<x,pgn)>+8)
1=1 ! , I
(115)
n Ny
= dgp)‘max‘<x,p5“)>p—NKp
p=0 1t (116)
n My
<e Ed@‘
p=01=1
B.f 1] Sc(p)(or{f,l} 117
P n ),
Then inecuality (5.15) imply:
c(p)(nr[f,rllj Sc(p)E”an—pr (118)
o 1=1
and by (Lemma:
(119)

1 Il
) ., | <Br-
n P 1=1

Theorem 5.16 (The saturation problem for the
approximation of multivariate function in L (k) spaces for
p<1 using a forward regular neural network): For any
fel,k).p<l there 1s a regular, one ludden layer FNN,
N.(x)of the form (1.1) with o€j, and the hidden unit number
such that:

k+d-1
d-1

(120)

m>§(k+l){ J—mo(n)

[N.£ - B,f], = (7} if and only feLip(a), if:

Proof: let feLip(a).:
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1
N,£ -], <c(p)(ﬂr{ f,nl

121)
1 (a)
=1, =o
c(p)mr[f,ﬂ ST (122)
D i=1
We obtain:
(123)

(nr{f,l

CONCLUSION

We define a type of K-functional and a modulus of a
smoothmess i terms of Dunkl operator, then we
mtroduced a relationship of equivalence between them
and we prove direct and inverse estimation and saturation
problem for the approximation of multivariate function
L,(k)in spaces for p <1 using a forward regular neural
network .
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