Research Journal of Applied Sciences 11 (10): 900-909, 2016
ISSN: 1815-932X
© Medwell Journals, 2016

Enhancing the Performance of Decoupled Software Pipeline
Through Backward Slicing

'Esraa Alwan, *John Fitch and *Julian Padget
"Department of Computer Science, University of Babylon, Hillah, Iraq
"Department of Compute Science, Bath University, Bath, England

Abstract: The rapidly increasing number of cores available in multicore processors does not necessarily lead
directly to a commensurate mcrease in performance: programs written m conventional languages such as C,
need careful restructuring, preferably automatically, before the benefits can be observed mn improved run-times.
Even then, much depends upon the intrinsic capacity of the original program for concurrent execution. The
subject of this study 1s the performance gains from the combined effect of the complementary techniques of
the Decoupled Software Pipeline (DSWP) and (backward) slicing. DSWP extracts thread level parallelism from
the body of a loop by breaking it into stages which are then executed pipeline style: in effect cutting across the
control chain. Slicing, on the other hand, cuts the program along the control chain, teasing out finer threads
that depend on different varables (or locations). parts that depend on different variables. The main contribution
of this paper 1s to demonstrate that the application of DSWP, followed by slicing offers notable improvements
over DSWP alone, especially when there is a loop-carried dependence that prevents the application of the
simpler DOALT optimization. Experimental results show an improvement of a factor of ~1.6 for DSWP +slicing
over DSWP alone and a factor of ~2.4 for DSWP + slicing over the original sequential code.

Key words: Decoupled software pipeline, slicing, multicore, thread-level parallelism, automatic restructuring

INTRODUCTION

Multicore systems have become a dominant feature
in computer architecture. Chips with 4, 8 and 16 cores are
available now and higher core counts are promised.
Unfortunately increasing the number of cores does not
offer a direct path to better performance especially for
single-threaded legacy applications. But using software
techniques to parallelize the sequential application can
raise the level of gain from multicore systems (Bridges,
2008). Parallel programming 1s not an easy job for the user,
who has to deal with many issues such as dependencies,
synchronization, load balancing and race conditions. For
this reason the role of automatically parallelizing compilers
and techmques for the extraction of several threads from
single-threaded programs without programmer
intervention is becoming more important and may help to
deliver better utilization of modern hardware (Liao ef ai.,
2010). Two traditional transformations, whose application
typically delivers substantial gains on scientific and
numerical codes are DOALL and DOACROSS. DOALL
assigns eachiteration of the loop to a thread Fig. 1 which
then may all execute in parallel because, there are no
cross-dependencies between the iterations. Clearly,
DOALTL performance scales linearly with the number of

available threads. The DOACROSS Fig. 2 technique is
very similar to DOALL, in that each iteration 1sassigned to
a thread, however there are cross-iteration dataand
control dependencies. Thus to ensure the correct
results,data dependencies have to be respected, typically
through synchronization so that a later iteration receives
the correctvalue from an earlier one as illustrated in Fig. 1
{(Vachharajani, 2008).

DOALL and DOACROSS techniques depend
omdentifying loops that have a regular pattem
(Vachharajam et al, 2007) but manyapplicatiors have
irregular control flow and complex memoryaccess
patterns, making their parallelization very challenging. The
Decoupled Software Pipeline (DSWP) has been shown
tobe an effective technique for the parallehzation of
applicationswith such characteristics. This transformation
partitions theloop body into a set of stages, ensuring that
critical pathdependencies are kept local to a stage as
shown in Fig. 3. Each stage becomes a thread and data 1s
passed between threads using inter-core communication
(Huang et al., 2010). The success of DSWP depends on
being able to extract the relatively fine grain parallelism
that 1s present in many applications. Another techmique
which offers potential gains in parallelizing general
purpose applications is slicing. Program slicing transforms

Corresponding Author: Esraa Alwan, Department of Computer Science, University of Babylon, Hillah, Iraq

Res. J. Applied Sci., 11 (10): 900-909, 2016

core 1 Core Z
o | G
& it will I
| KB] D
OIG
=2 i ?
| Ce)
G| G
| i -i_ﬂ { Bs :j
f — —

Fig. 1: DOALL technique

large programs into several smaller ones that execute
mndependently, each consisting of only statements
relevant to the computation of certain, so-called,
(program) points. The slicing technique 1s appropriate for
paralle]l execution on a multi-core processor because it has
the ability to decomposethe application mto independent
slices that are executable in parallel (Wang et al., 2008;
Weiser, 1983, 1984.). Many techniques have been
proposed to extract thread level parallelism from the
program. Wang et al. (2008) mtroduce a dynamic
framework to parallelize a single threaded binary program
using speculativeslicing (Rong et al., 2007) propose a
method to construct a software pipeline from an arbitrarily
deep loop nest, whereas the traditional one 1s applied to
the innermost loop or from the innermost to outer loops.

This approach is called the Single dimensional
Software Pipeline (SSP). The (SSP) name came from
the conversion of a multi-dimensional Data

Dependency Graph (DDG) to 1-D DDG. Rangan et al.
(2004) introduced a new technique to utilize a decoupled
software pipelne for optimizing the performance of
Recurmsive Data Structures (RDS3) (e.g., linked lists, trees

901

Core 1 o X
(a0
1 = _t 3) .
&=
e i e ;._1_ .
: 4+ — | =y
| e
+~ F e
R T
i el S X
A (o= 2
s gl TR oA
-I:__ Be _:}; i __a.e-___"__:
i R T gl 2
Cw 3| (D
-Il = bl _E_ P
S
! e

Fig. 2: DOACROSS technique

and graphs). Raman et al. (2008) mntroduce a Parallel Stage
Decoupled Software Pipeline (PS-DSWP). This technique
is positioned between the decoupled software pipeline
and DOALL. The reason for this combination is that the
slowest stage of DSWP bounds the speed of DSWP as
we have noted so this work exploits the ability to execute
some stages of DSWP using DOALL. Huang et al. (2010)
show that DSWP can improve performance if it worlks with
other techniques. This usage called DSWP+, divides the
loop body into stages. These stages are open to
parallelization with another techniques like DOATLL,
LOCALWRITE and Spec DOALL.

This rerches explores the possibility of performance
benefits arising from a secondary transformation of
DSWP stages byslicing. Our observation is that
individual DSWP stages can be parallelized by slicing,
leading to an mmprovement in performance of the longest
duration DSWP stages. In particular, this approach can be
applicable in cases where DOATLL is not. The proposed
method is implemented using the Low Level Virtual
Machine (LLVM) compiler framework (Lattner and
Adve, 2004). LLVM muses a combination of a low

Res. J. Applied Sci., 11 (10): 900-909, 2016

Coire 1 Care 2
) .-"'-__--'H.

Mo
T .'-{_'. i — .

(a3 | € m
S -_T_‘-. H.-\-\-\"-\.T_.t—_—-

GO TG
He T

S '““-.i,.--__--_h

TR k=)
- B . SR

P e T

(=] (&)
5 - i N o

[“ AE i [®e _}
5 -_T_-_ > P, _-_-_

Ca 3| =D
7 I = i =

o : " -\.*_i.— —

St o I el

il e

Fig. 3: DSWP techmique adopted

level virtual instruction set combined with high level type
mformation. An important partof the LLVM design 1s its
Intermediate Representation (IR). This has been carefully
designed to allow for many traditional analyses and
optimizations to be applied to LLVM code and many of
which are provided as part of the LL VM framework.

MATERIALS AND METHODS

DSWP+slicing transformation: The performance of a
DSWP-transformed program is limited by the slowest
stage. Thus, any gains must come fromimproving the
performance of that stage. The mam feature of the
proposed method 1s the application of backward slicingto
the longest stage emerging from the DSWP
transformation. This is particularly effective when that
stage mcludes a function call. To illustrate the method,
consider the example in. DSWP partitions the loop body
into the parts labelled I. and X, then we slice X to extract
S1 and S2. Consequently, instead of giving the whole of
stage X to one thread, it can be distributedacross n
threads, depending on the number of slices extracted with

902

in this case, one core running L. (the first stage) and
twomore running S1 and S2 (the slices from the second
stage). However while there are potential gamns from
splitting theloop body mto several concurrent threads,
there is still the cost of synchronization and
communication between threads to take into account. To
minimize these overheads we use lock-free buffers
{Giacomoni ef al., 2008 Zhao and Halmenberg, 2008). As
a result, producer and consumer can access the queue
concurrently, via the enqueue and dequeue operations.
This makes it possible for the producer and consumer
tooperate ndependently as long as there 1s at least one
data element in the queue.

Sliced loop body with recurrence dependency:
X: Work(cur) {
51: Slicel(cur);
82: Slice2(cur);
}
List *cur = head;
L: for (; cur I=NULL,;
cur = cur->next)
X: Work(cur);

Source program:

1. 1Calc(int M // Calc is the function to
be sliced

2double ss=0; 2double da_in

3 int i; Jdouble* da_out) {

4 double a[0]-0; 4int j;

Swhile(node !'=Null) { Sb[0O]=0;

6Calc(node->data,a[i], &ali+1);
7 it
8 node—node-=next;

/ first slice variable da_out

9} 9 b[]=b[]+xx(m);// second slice variable b[j]
10 10 }

6 for(j=0j=M;j++) {
7 mt=da_int+seq();
8(*da_out)+=da_in+cos(my

Implementation of DSWP+slicing: We build on earlier
work by Zhao and Hahnenberg (2008) who implement
DSWP in LLVM. We have extended that code
withbackward slicing and a decision procedure to
determine when 1t 1s worth applying the transformation

Slice 1 on da_out:

1 Slice 1(M,da in){

2 it}

3 for(i=0 <M+ {

4 mrt=da_in+seq(j);

5 (*da_out) += da_intcos(m);
5 1}

7}

Slice 2 on b(j):

1 Slice 2(M,da_in,da_out){
2 intj;

3 b[oFo0;

4 for(=0j<M;j++) {

5 mrt=da_intseqd));

6 blj]=blj]txxim);

T8

Res. J. Applied Sci., 11 (10):

The transformation procedure is based on the
algorithm for DSWP proposed by Ottoni et al. (2005) Tt
takes as input L, the loop to be optimized and modifies it
as a side-effect. The details are as follows:

Find candidate loop: This step looks for the most
profitable loop to apply DSWP + Slicing. We collect
staticin formation about the program and then use a
heuristic to estimate the number of cycles necessary to
execute allinstructions in every loop in the program. The
loop with the largest estimated cycle count and
containing a functioncall 1s chosen.

Build the Program Dependency Graph (PDG): The
subject 18 the loop to be parallelized. Figure 4 shows
thatthe solid lines (red) denote data dependency and
dashed lines (black) control dependency.

Build strongly connected component (SCC) DAG: In
order to keep all the imnstructions that contribute toa
dependency local to a thread, a Strongly Connected
Component(SCC) is built, followed by the DAG for the
SCCs. Consider the code 1. The loop (lines 5-9) traverses
a linked list and calls the procedure Calc. Figure 5 shows
the DAGsce of the PDG of the programon the left had side
of in the procedure Calc, there are loop-carried
dependencies that make DOATLLinapplicable. After DSWP
partitioning, we extract two slices where function seq 1s
side-effect-free.

Assign SCCs to threads: The previous step may result in
more SCCs than available threads. In this case, we merge
SCCs until there are as many as there are threads. In our
example, we have a function call in the loop body.
Weassign the SCCs that represent the outer loop body to
the first thread and the n extracted slices to n threads.

The compute all slice algorithm adopted from Jehad

Al Dallal:
Input: A PDG, set of empty list associated,one for each node
identifier(variable in theslicing list).
Output: Slice for each node identifier(variable).
Algorithm:
Make all PDG nodes as not visited
CormputeASlice{exit node)
Compute A Slice (node n){
If node is not visited
Mark node n as visited
Add the instructions of n to the setassociated with node n
For each node m(instruction)in whichnode n depends ComputeASlice(m)
Add the content of the setassociated with node m to the setassociated with
node n

}

Extract slice: Tn this part, a small slicing program is
designed that has the ability to extract slices for the

903

900-909, 2016

¥ . i i
-\. _.-' N
i ' i
-\._\.I'. .%. ; _______ .Jl‘.‘ D __|'I
. el —
] .\."- - :
: .\."--,:-'.
I - .\.'\' -
. s _
{ B J ?” Y
| - |
. e
Fig. 4: Program dependency
¢ S0Ca)
o o eac
T
{ : STy -] :
e ;
%
¢ soce D)
- Tiata dapandenos
= - e Conitrol depsndeancs

Fig. 5: DAG of SCCs

limited range of the case studies. The algorithm illustrated
1n 18 used to compute an intra-proceduralstatic slice. The
N static slices from the function body areextracted as
follows:In the first step, the PDG 1s built for the function
bodyby drawmng up the dependency table that has both
controland data dependency (similar to the one above
used todetermine thread assignment). Secondly, the entry
blockfor the function body is examined so as to identify
the variables to be sliced and then the names of these are
collected being put on a slicing list. The compute A sliceis
called to extract a slice for every listed variable. Then an
attempt 1s made to i1solate the control statement parts such
as loop or if statement, into another table called the
control table. After collecting the control part
instructions, these are added to the extracted slice, if one
of the slice instructions is contained in this control parts.
For each filtered variable in the slicing 1dentifiers list, first
an empty list 13 assoclated with it and subsequently, all
the PDG table entries are scanmed to find which one
matches the slicing identifier. If one is found, then allthe
instructions that have data or control dependency are

Res. J. Applied Sci., 11 (10): 900-909, 2016

10

Fig. 6: Effect of N and M on DSWP

added to the associated list. This procedure is repeated
toall the instructions in the associated list and their
operands and 1s not stopped until all the mstructions and
their operands are contained in this list or all the variables
that represent the loop induction variables have been
reached. In the case of two slices will be retracted for two
variables.

Tnsert synchronization: To ensure correct results, the
dependence between threads must be respected and
for pipeline parallelism to be effective, the overhead on
core-to-core communication must be as low as possible.
Hence, we use the fast forward circular lock-free queue
algorithm (Giacomoni et al., 2008).

RESULTS AND DISCUSSION

Experimental results: This study discusses the results
obtained from the application of the
umplementation of the proposed method. Several programs
have been used as case studies. Some are artificial and
others are taken from (Tao, 1997). The discussion
examines two 1ssues: the effect of lock-free buffers on the
performance of DSWP and theresults from the application
of DSWP+slicing, demonstrating how tlus method can
improve the performance of long stage DSWP with

automatic

different program patterns.

Communication overhead: This study examines the
impact of communication costs on the performance of
DSWP. Tt is important for us to be able to quantify this

cost because 1t 1s a critical factor m the decision

15

904

20 25

procedure for whether to carry out the DSWP + slicing
transformation. We are also aware this cost will be
platform dependent wlich is why we provide details of
ourparticular platform. In a production deployment, this
aspect would have to be measured as part of a calibration
process.Consider the program in. We wish to execute this
it by applying DSWP to the loop that takes the most
executiontime of the program. Imtially, we partition the
program into two parts, give eachto a thread and execute
the threads as a pipeline. The first thread handles lines
5-14 and the second, lines 15-24. Two parameters play a
vital role m determimng the benefit (or otherwise) of
DSWP, namely M and N. M affects the amount ofwork
inside each thread by controlling the number of iterations
in the inner loops while N, in effect, determines the
volumeof data transfer between threads, by controlling
the number of outer loop iterations. Figure 6 shows how
changing the value of N (1-40) and M (1000-1000000)
affects the execution time of the DSWP version compared
to the sequential program. From N = 6 and M = 51000 the
performance of DSWP becomes better than the sequential
one. Furthermore the effect of the buffer size on the
performance of DSWP 13 examined, for which the same
program as in was employed. However thus tume the value
of N was fixed to 1,000 and M to 10,000 and the only
parameter that was.

Sequential version of program to evaluate DSWP

overheads:
1 maing)
2 int N,M

4 rows=N;

Res. J. Applied Sci., 11 (10): 900-909, 2016

Stor(il=1; il < rows; il++) {

6 for(z=1;z<M;z++) {

T sum =

8 for(a=1; a<10Q; at+)

9 sum = sum + image[il | *mask_1[a];
10 if(sum > max) sum = max;

1 1if{sum <) sum =10;

12 if(sum < out_image[il])
130ut_image[il] = sum;

14}

15for(z1=1;z1<M;z1++) {

16suml = 0;

17 for(al=1; al<10; al++) {

18 suml = suml + image[il] * mask_2[al];

1%if(suml > max) suml = max;

20 if(suml < 0) suml = 10;
21 if(suml = out_imagelil])
22 out_image[il] = suml;
23}

24)

changed was the buffer size. That is was varied between
10 and 1000, with the execution time of the program being
only slightly changed during the during the execution
(2- 5 ms) which was because it was assumed that this was
the amountof time needed to create the link list. As a
result, it can be concluded that the effect of buffer size on
DSWP 1s trivial.

Combining DSWP + slicing: We now examine the effect
of combimng DSWP + slicing by applying slicing to the
long stage coming out of the DSWP transformation. The

sample programs that we study here all exhibit an
umbalance between the two stages of the DSWP, 1.e., the
number of mstructions in the outer loop 18 less than the
number of instructions in the function body. The addition
of slicing permits some degree of equilibration. Two of the
sample programs are artificial (linked list 2¢ and linked list
3. ¢) while the remaining three (fftc, pro 2.4¢c and test
0697¢) are genuine. For each of the case studies, we
extract two slices from the function body, so that the
maximum number of threads ingeneral were four
depending on whether the extracted slice retums value to
the original loop or not. The data transferred between
DSWP stages corresponds to the arguments of a function
which in our case studies are between one and four
arguments. LLVM-gec (the LLVM C front end, derived
from gee) and the LLVM compiler framework have been
used to automate our method. Tn addition, manually
transformed programs have been compiled using gee in
order to be able to compare manual and automatic results.
(Table 1) summarises the technical details of the
evaluation platform. Our automatic method uses two
passes: 1) The first pass carries out static analysis of all
the loops in a program. For each loop it adds up the static
execution time for each instruction in the loop body and

905

Table 1: Platform details
Processor

Processor speed
Processor configuration
Core

Intel(R) Core(TM) i7 CPU
2.93 GHz
1 CPU, 4 Core, 2 threads per

L1d Cache size 32k

1.1i Cache size 2k

1.2 Cache size 256 k

1.3 Cache size 8192k

RAM 4.GB

Operating system SUSE

Compiler GCC and LLVM

Table 2: Execution times for program test0697.c

Gee-dswp-slice LIvm-dswp-slice
Gee-swp (Man.) Gee-seq (Auto)) Llvin-seq Iter.
0.304 0.272 0.370 0.119 0.135 2
0.483 0.420 0.628 0.173 0.215 5
0.667 0.602 0.875 0.179 0.287 7
0.866 0.775 1.140 0.260 0.360 9
1.046 0.954 1.387 0.263 0.410 11
1.242 1.115 1.651 366 0.523 13

also accumulates the execution time for the function
bodies and stores these results in a Table 2) The second
pass chooses a loop to transform and constructthe
software pipeline. This uses the data collected in the
previous pass to identify the highest cost loop that also
contain a function call. Next we look at the sample
programs in more detail and at the results of the
transformation process.

The fft.c: Animplementation of the fast Fourier transform
(Tao, 1997). The test program 1s a generalization of the
program to make 1t work with N functions. We give the
outer loop to the first thread and the fft function to the
second thread From the graph in it is clear how the
unbalanced long stage DSWP can affect DSWP
performance, where it only improvesslightly on the
sequential program. We extract two slices from the loop
body: The first is the computation of the real part and the
second the imaginary part again shows loop speed up for
DSWP+slicing in both manual and automatic forms.

The pro-2.4.c: This program (Tao, 1997) computes the
derivative of N functions. F1 1s the first derivative, F2 the
second, D1 1s the error mF1 and D2 the error in F2. Sumnilar
to the previous program we extract two slices from
function body after giving the it to the second stage
DSWP. As with the previous program we add some
adaptations to the program and we generalize it to make it
work for N functions. We set NMAZX = 100000 and vary
M from M = 5 to M = 30. Figure 7 shows the execution
time for sequential, DSWP, DSWP+slicing (manual) and
DSWP+slicing (automatic). Figure 8 and 9 shows loop
speed up for Pro-2.4 using DSWP+slicing.

Res. J. Applied Sci., 11 (10): 900-909, 2016

o llvm-seq

o [y -dsw p-slice

W gcc-seq

execution time (ms)

200 -

o 4

= gcc-dswp-slice

= dswp

Fig. 7: Loop speed up with three threads for test 0697 .¢ program

execution time (ms)

Fig. 8: Loop speed up with three threads for fft.c program

1800

Iteration

1600

1400

1200

1000

800
600 -

400

execution time (ms)

200

o

10

20

30 40 50

Iteration

Fig. 9: Loop speed up with three threads for linked list 2.¢ program

Test 0697.c: This program computes the spherical
harmonics function which is used in many physical
problems ranging from the computation of atomic electron
configuration to the representation of the gravitational
and magnetic fields of planetary bodies. Tt has two
function calls inside the loop body. The first, called the
spherical-harmonic-value, gives the mitial value to the
second function argument with this fimctionbeing called
the spherical-harmonic. The loop was divided into two
parts, depending on the instruction latency execution
time. The second function call which represents the

906

spherical-harmonic was allocated to the second thread
whilst the rest ofthe loop body containing the first
function call was assignedto the first thread.
Subsequently, two slices, c[] and s[] wereextracted from
the second function call by applying slicingtechnicque on
this part alone. With high values (40000) of I and M the
execution time of this combination was betterthan for the
sequential program. The number of threads wasthree with
two communication buffers and the number oftransferred
function arguments was four. The results obtained by
automatic and manual implementation for the sequential

Res. J. Applied Sci., 11 (10): 900-909, 2016

and DSWP slicing versions, show that the former
methodgives ~1.4 speed up compared with the sequential
programin the LLVM environment(see columns 2 and 3 in
the table inl4). Moreover, columns 4 and 5 under the GCC
environmentshows that the speed up becomes ~1.5 after
applying theslicing technicque, while that for DSWP alone
15 only = 1.3 (Table 3).

Table 3: Execution times for program fit.c
Gee-dswp-slice Llvm-dswp-slice

Gee-dswp (Man.) Gee-seq (Auto.) Llvin-gseq Tter.
0.558 0.310 0.700 0.406 0.702 5
1.244 0.690 1.391 0.780 1.375 10
1.934 1.069 2.078 1.155 2.058 15
2.625 1.453 2.770 1.532 2.750 20
3.972 2.214 4.130 2.272 4.106 30
5.390 2,954 5.530 3.013 5474 40

Table 4: Execution times for linkedlist2.c program
Gece-dswp-slice Llvm-dswp-slice

linkedlist{2,3}.c: The fourth program is anotherartificial
program in two variants. The common feature is
thetraversal of a linked list of linked lists (in contrast to
the use ofarrays as m the other examples). The key
difference betweenthe variants 1s that the function called
from the loop body does not retum a value m the first
(linkedlist2.c) anddoees in the second (linkedlist3.c). This
allows us todemonstrate the cost of adding a buffer to the
program. Two parameters affect the workload, namely the
length of the firstlevel list and the length of the second
level list.In these test the length of the second level list 15
fixed atl 000 elements, while the length of the first ranges
between 10 and 70, giving rise to the results shown in
Table 4 and theexecution times show in Fig. 9. The results
for the secondversion of the program appear in Table 5
and 6. By comparing Fig. 10 and 11, we can see how

Table 5: Execution times for linkedlist3.c program
Gee-dswp-slice LIvm-dswp-slice

Gee-dswp (Man.) Gee-seq (Auto.) Llvm-seq Iter. Gee-dswp (Man.) Gec-seq {(Auto.) Llvm-seq Tter.
0.167 0.95 0.170 0.120 0.191 5 0.167 0.05 0.170 0.122 0.160 5
0.332 0.190 0.335 0.215 0.359 10 0.332 0.190 0.335 0.214 0.344 10
0.664 0.369 0.680 0.380 0.707 20 0.664 0.369 0.680 0.387 0.694 20
0.998 0.556 1.010 0.553 1.035 30 0.998 0.556 1.010 0.557 1.058 30
1.320 0.730 1.330 0.733 1.372 40 1.320 0.730 1.330 0.927 1.726 50
1.660 0.910 1.684 0.915 1.707 50 1.660 0.910 1.684 1.284 2.440 70

‘g m Ivm-seq

@ ™ lvmn-dswp-slice

E = gccoseq

=

= = gcc-dswp-slice

g = dswp

&

iteration

Fig. 10: Loop speed up with three threads for linked list 3.¢ program

executicn time(ms)

W [vm-Seq

= [lvm ~-dswp-slice
mgcc-seq

W gcc-dewp-slice

M gcc-dswp

Iteration

Fig. 11: Loop speed up with three threads for Pro 2.4 program

Res. J. Applied Sci., 11 (10): 900-909, 2016

Table 6: Execution times for Pro 2.4 program

Gee-dswp-slice Llvm-dswp-slice
Geeswp (Man.) Gee-seq (Auto.) Llvin-seq Tter.
0.058 0.042 0.83 0.062 0.088 5
0.103 0.077 0.153 0.100 0.153 10
0.145 0.101 0.220 0.130 0.227 15
0.188 0.134 0.292 0.153 0.290 20
0.230 0.168 0.365 0.180 0.353 25
0.275 0.210 0.450 0.217 0.419 30

adding an additionalbuffer to communicate the return
value from the one of these slices affects the execution
time. This cost appears to have amarginally lngher impact
on the program using DSWP alone, making it slower than
the original sequential program.

CONCLUSION

This study introduces the idea of DSWP applied in
conjunctionwith slicing, by splitting up loops into new
loops that are amenable to slicing techniques. An
evaluation of this technique on five program codes with
a range of dependence patterns leads to considerable
performance gains on a core-17 870 machine with 4-core/
8-threads. The results are obtamed from an automatic
umplementation that shows the proposedmethod can give
a factor of up to 2.4 speed up compared with the original
sequential code. The contribution of this study is a proof
of the concept that DSWP + slicing can offer useful
benefits and, moreover that such transformation can be
done automatically and under the control of an heuristic
procedure that assesses the potential gains to be
achieved. Consequently, there is much work toN be done
in respect of improving the collection of data and the
decision procedure as well as the integration of the
techmque into a non-experimental compiler environment.
More specifically we aim to increase the potential
parallelism that can be extracted from the long stage
DSWP. One of major issues with backward slice is the
longest critical path (slice) creates a limit on parallelism.
Tnsights from (Wang et al., 2008) suggest we can increase
parallelism (number of extracted slices) by combming loop
unrolling with backward slice in the presence of loop
carried dependencies.

ACKNOWLEDGEMENTS

We gratefully acknowledge the Ministry of Higher
Education and Scientific Research (MoHESR) n Iraq for
theirfinancial support during the period of this research.

REFERENCES
Bridges, M.J., 2008. The velocity compiler: Extracting

efficient multicore execution from legacy sequential
codes. Ph.D. Thesis, Princeton University, USA.

908

Giacomoni, I., T. Moseley and M. Vachharajani, 2008. Fast
forward for efficient pipeline parallelism: A
cache-optimized concurrent lock-free queue.
Proceedmngs of the 13th ACM SIGPLAN Symposium
on Principles and Practice of Parallel Programming,
February 20-23, 2008, ACM, Salt Lake, Utah,
ISBN:978-1-59593-795-7, pp: 43-52.

Huang, J., A. Raman, T.B. JTablin, Y. Zhang and T.H. Hung
et al., 2010. Decoupled software pipelining creates
parallelization opportunities. Proceedings of the 8th
Annual IEEE-ACM International Symposium on Code
Generation and Optimization, April 24-28, 2010, ACM,
Toronto, Ontario, TSBN:978-1-60558-635-9, pp:
121-130.

Lattner, C. and V. Adve, 2004. LLVM: A compilation
framework for bLfelong program analysis and
transformation. Proceedings of the International
Symposium on Code Generation and Optimization,
March 20-24, Chicago, TL, UJSA., pp: 75-86.

Liao, C., D.J. Quinlan, 1.J. Willcock and T. Panas, 2010.
Semantic-aware automatic parallelization of modern
applications using high-level abstractions. Int. 7.
Parallel Program., 38: 361-378.

Ottoru, G., R. Rangan, A. Stoler and D.I. August, 2005.
Automatic thread extraction with decoupled software
pipelining. Proceedings of the 38th Annual
TEEE-ACM International Symposium on Micro
architecture, November 12-16, 2005, IEEE Computer
Society, Washington, USA., ISBN:0-7695-2440-0, pp:
105-118.

Raman, E., G. Ottoni, A. Raman, M.J. Bridges and
DI. August, 2008. Parallel-stage decoupled software
pipelining. Proceedings of the 6th Annual TEEE-ACM
International Symposium on Code Generation and
Optimization, April 06-08, 2008, ACM, Boston,
Massachusetts, ISBN: 978-1-59593-978-4, pp: 114-123.

Rangan, R., N. Vachharajani, M. Vachharajani and
D.I August, 2004, Decoupled software pipelining
with the synchronization array. Proceedings of the
13th International Conference on Parallel
Architectures and Compilation Techmiques,
September 29-October 3, 2004, Antibes Juan-les-Pins,
France, pp: 177-188.

Rong, H., Z. Tang, R. Govindarajan, A. Douillet and
G.R. Gao, 2007. Single-dimension software pipelining
for multidimensional loops. ACM. Trans. Archit.
Code Optim. (TACO.), 4: 163-174.

Tao, P., 1997. An Introduction to Computational Physics.
Cambridge University Press, UK.

Vachharajani, N., R. Rangan, E. Raman, M.J. Bridges,
G. Ottoni and D.I. August, 2007. Speculative
decoupled software pipelining. Proceedings of the
16th Intemnational Conference on Parallel Architecture
and Compilation Techmques, September 15-19, 2007,
Brasov, Romania, pp: 49-59.

Res. J. Applied Sci., 11 (10): 900-909, 2016

Vachharajani, N.A., 2008. Intelligent speculation for
pipelined multithreading. Ph.ID. Thesis, Princeton
University, Princeton, New Jersey, TUSA.

Wang, C., Y. Wu, E. Borin, 3. Huand W. Liu et al., 2008.
New slicmg algonithms for parallehzing
single-threaded programs. PESPMA ., 2008: 20-27.

Weiser, M., 1983. Reconstructing sequential behavior
from parallel behavior projections. Inf. Process. Lett.,
17:129-135.

909

Weiser, M, 1984. Program slicing. TEEE
Trans. Software Eng., SE-10:
352-357.

Zhao, F. and M. Hahnenberg, 2008. Decoupled software
pipelining in LLVM. MCS Thesis, Carnegie Mellon
University, Pittsburgh, Pennsylvama. https:/www.
cs.cmu.edw/afs/es. cmu. edu/Web/People/fuyaoz/
courses/15745/ report.pdf.

	900-909_Page_01
	900-909_Page_02
	900-909_Page_03
	900-909_Page_04
	900-909_Page_05
	900-909_Page_06
	900-909_Page_07
	900-909_Page_08
	900-909_Page_09
	900-909_Page_10

