Research Journal of Applied Sciences 11 (10): 1060-1068, 2016
ISSN: 1815-932X
© Medwell Journals, 2016

Robot Path Planning Based on Improved Max—min Ant Colony Optimization
Algorithm in Dynamic Environment

Ali Hadi Hasan
College of Information Technology, University of Babylon, Babylon, Iraq

Abstract: This paper proposes a method to find an optimal local path based on an improved version of the
MAX-MIN Ant Colony Optimization (ACO) algorithm in dynamic robot path environments. It uses the grid
method to decompose two-dimensional space to build class nodes that contain the information of the space
enviromment. The proposed improvement of MAX-MIN ACO algerithm occeurs in the stage of mixing
pheromone trail updating with D* algorithm strategies to construct the consequence modified (deposited)
pheromone trail update m each iteration. Thus the robot (ant) analyses the environment from the goal node
(food) and computes the cost (pheromone deposition) for all the nodes to the start node (nest). The robot uses
tour construction probabilities to choose the best solution to move it from the start node through dynamic
environment which contains dynamic obstacle moving in free space by finding and displaying the optimal path.
Some experimental results that are simulated in different dynamic environments, show that the robot reaches
its target without colliding obstacles and finds the optimal local path with mimmum iterations, minimum total

path cost and minimum time occupy.
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INTRODUCTION

The problem of path planning is to determine either
existence of solution n a form of a sequence of state
transitions through a graph from start state to a goal state
or non- existence of such a solution. The path is said to
be optimal when the total cost of transitions crossing
through a possible sequence of states i the graph is the
minimum (Stentz, 1994). Path planmng of a mobile robot 1s
finding a collision-free path from the initial point to target
point. This 15 done through using an optimal performance
criterion which can be time, energy or distance which 1s
the most commonly used. Path planning algorithms are
classified into off-line and on-line based on the obtainable
information about environment.

When the full information about static obstacle and
the direction of robots movement in environment 1s
already available, the path planning is described as off-
line (global) path planning. But when information about
environment 18 wiknown, the robot will move depended
on data supplied by sensors which collected and convey
data as the robot wanders in environment. In such case
the path planning is said to be an on-line (local) path
planming. Initially, on-line path plarming acts mn an
off-line mode but it tums to on-line path planmng
when it discovers new changes in obstacle scenario (Raja
and Pugazhenthi, 2012). The D*algorithms have been

used extersively m robotics to move the robot

navigation in unknowr, partially known, and changeable
environments (Stentz, 1994). Many algorithms exist for
planning paths improve from D* such as Focussed
D*(Stentz, 1994), D* Lite (Stentz, 1994) and field
D*(Ferguson and Stentz, 2006)

Ant Colony Optimization (ACQ) is a member of the
meta-heuristic algorithms that emulate the capability of
ant colony of discovering the shortest path between the
nest and the food source. ACO as one of the prosperous
application of swarm intelligence (which deals with
groups’ behavior like ants rather than individuals'y can be
utilized m solving complex optimization problems by
adding problem-dependent heuristics (Saeheav et al.,
2009). The MAX-MIN Ant System (MMAS) algorithm
strongly exploits the search history by permitting the best
solutions to add pheromone during the process of
pheromone trail updating. Moreover, the pheromone
convergence of the search is avoided due to the simplicity
of the mechanism used in limiting the strength of
pheromone trails. It 1s also possible to extend the MMAS
to be added to the local search algorithms. The solutions
produced by the ants with local search algorithms have
been improved by the best performing ACO algorithms for
many different combinatorial optimization problems.
MMAS is one of the most effective performing ACO
algorithm for optimal path planning as the researchers’
outcomes show (Stutzle and Hoos, 2000).
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Mei et al. (2006) developed a new hybrid method
between ACO as a global path planning algorithm and
APF as a local plammer method to mobile robot. The
pheromone generated by ACO 13 invested as global
information to lead the APF to jump to local minimum.
Their simulation results showed that the global optimal
and real-time obstacle avoidance can be satisfied by
hypoid APF and ACO algorithm. They were persuaded
that ACO exceeds GA in path planning by comparing their
performance.

Brand ef af. (2010) found a method of using ACO for
robot path planmng m a dynamic enviromment. They
found the best shortest and collision free path in a grid
map. They showed that when an obstacle is add and
blocked that path the basic ACO algonthm can
successfully make a global re-imtialization, which
consisted of resetting the entire map to its initial
pheromone levels and then re-running the algorithm using
a block as the new start position.

Nicholas Charabaruk offered an  improved
Max-Min ACO algorithm by adding the Max-Min ACO
algorithm to the Bug?2 algorithm to find dynamic path
planning with better solutions and faster convergence
speeds. They believed that thewr method are viable for
global path planning and when the path was blocked the
system is re-initialized and the old pheromone trails are
leaving they also mcrease the processing speed. They
found the results of their inproved method have shorter
average path lengths and that they vastly reduce
processing times than standard ACO and Max-Min ACO
algorithms do.

Ant colony optimization algorithm: M. Dorigo’s Ph.
D. dissertation presented Ant Colony Optimization (ACO)
algorithm in 1992 to simulate the manner of ants to get
solutions for optimization problems. Biological ants
follow a complicated social manner in their looking for
food depends mainly on
(Pheromones) they deposit across thewr path to food
These pheromones function not only as
attracter to other ants but also as a guide that leads to the
food source. The more amount of pheromone laid along
the path, the more number of ants will follow that path.
The shortest path to food source will be the one that has
the most pheromones as the greatest numbers of ants
can pass it during less period of time (Brand et al., 2010;
Dorigo and Stutzle, 2004).

sources. This manner

source.

Basic ant colony optimization algorithms: When ACO
algorithms 1s applied to the optimal path plarming, arcs are
utilized as solution constituents. Each arc(i,j) is connected
to a trail of pheromone trail T(t). During the run of

algorithm, the pheromone trails are altered by pheromone
trail evaporation and trail reinforcement (Sun and Tian,
2010).

Tour construction: When (m) ants are put in (m)
randomly selected nodes (locations), every ant starts to
move to a node. Tts movement to that node is probabilistic
choice which is biased by pheromone trail T,(t) and by a
local heuristic information m; which is a fimction of arc
length. All ACO algorithms for the optimal path plamming
use o4(t) = 1/ d;. Ants choose the nodes which are related
by arcs that have high pheromone trails. Tn ACO
algorithms the probability with which an ant chooses to
gotoanode s

pk 0 = (6P vsae N oPafy - O

The parameters « and p  decide the relative
importance of the pheromone trail and the heuristic
information respectively, and the feasible neighbor set of
nodes that have not yet been visited by ants 15 denoted
byNF. The nodes visited in every tour will be stored in
the ant's memory which then will be used to define ¢k in
every step of construction to guarantee the generatioh of
only valid Hamiltonian cycles. Moreover, it permits the
ant to trace its tour again as soon as it is finished, and it
deposits pheromone on the arc there (Stutzle and Hoos,
2000, Brand et af., 2010, Reshamwala and Vinchurkar,
2013).

Pheromone update: When the tour construction is
accomplished, the updating process of the pheromone
trails starts. It is achieved through evaporating the
pheromone trails by a constant factor to a lower amount,
and thus the ant will be permitted to deposit pheromone
on the arc they visit. The update happens according to
the following rule:

m
T{tH 1) = pTy (t)+2 Arﬁ (t) (2)
k=1
Where:
p = The parameter (with O<p<1) is evaporation rate
ak@ = Represents the amount of pheromone ant k

9 puts on the arcs it has used in its tour

The accumulation of the pheromone trails i1s
avoided with help of evaporation as the pheromone trails
assoclated with arc that are not chosen will face
exponential decrease. This allow the algorithm ignore the
unfavorable choices. In ACO algorithms can be 5.k
defined as follows: i
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if arc (i, j) is used by ant
K in iteration t. (3)
0 otherwise

k
s LIE )

where L%(t) Stands for the tour length of the k™ ant. By
Eq. 3, the greater amount of pheromone indicates the
favorability of the node selected by ants to move to.
Generally speaking, when many ants used arcs in shorter
tours, these arcs will receive extra pheromone and will
have more chances of being selected in future iteration of
algorithm (Stutzle and Hoos, 2000, Brand et al., 2010;
Abdelbar and Wunsch, 2012).

MAX-MIN ant system: The stronger exploitation of the
best solutions found throughout search and search space
analysis can lead to an wnproved performance of ACO.
However, using a curious search potentially arouse the
problem of premature stagnation of the search. The best
performance of ACO algorithms for avoiding early search
stagnation can be obtamed by combiming an improved
exploitation of the best solutions found during the search
with an effective mechanism. MAX-MIN ant system
which has these requirements is different from AS in the
following aspects.

At each iteration only one single ant adds pheromone
for exploiting the best solution, this may be done either
during an iteration by (iteration-best ant) or during the run
of algorithm by the (global-best ant) (Stutzle, and Hoss
2000; Brand et al, 2010, Dorigo and Stutzle, 2004)
Stagnation is avoided through limiting the scope of
pheromone trails on every solution to an interval [min;
max]. The deliberate mitialization of pheromone to T,..
fulfill a greater level of solutions exploration at the
beginning of algorithm (Stutzle and Hoos, 2000).

Pheromone trail updating: The pheromoene trails after
each iteration 1s updated by using only one single ant in
MMAS. The following rule gives the modified pheromone
trail update:

T(t+1) = p’cij(t)+A“c];eSt (t) 4

where, abest = 1/(8™) and f{8™") denotes the solution
cost of either the iteration-best (™) or the global-best
solution (s¥). The use of cnly single ant in pheromone
trail has also been presented in ACS where only (s®) is
exploited (though s® has been used in some similar
experiments), MMAS concentrate on the use of the
iteration-best solutions. The choice of only one solutions
(either s® or s®) to be used in the pheromone update will
rule the manner of exploiting the search in MMAS. When

only 5% is used, it will be largely reinforced. The search
will focus on this selution limiting the chances of using
other solutions that can be better. This entails the
possibility of exploiting inferior solutions.

The case is different when s* is used in trail update
because the iteration best solutions varies from iteration
to iteration. This allows a greater number of solutions
components to have occasional reinforcement. However,
when MMAS 1s used with local search to solve larger
optimal path, the effective strategy will be the e of
mixed strategies represented by using s° as a default
solution for updating the pheromones and using 5% every
fixed number of iterations. The best strategy appeared the
use of a dynamical mixed strategy which increases the
frequency of using s¥ for the pheromone update during
the search (Stutzle and Hoos, 2000).

Pheromone trail limits: Search stagnation may happen
regardless the choice between the iteration-best and the
global-best ant for the pheromone trail update. Tn optimal
path planming, 1t may occur when pheromone trail in one
arc is higher than that in all others. ITn such a case and in
light of the probabilistic choice governed by Eq .1 an ant
which favors this solution will set it repeatedly and the
exploration of the search space stops. One way to avoid
stagnation is by affecting the probabilistic choices of the
next solution. This can be done through pheromone trails
and the heuristic information. The latter depends on the
problem and is not dynamic throughout the algorithm run.
Concerning the pheromone trail, the MMAS sets lumnits
T and T, on the minimum and maximum pheromone
{such that for all pheromone trails T;(t), T,,< T;(t)<T,,, to
prevent the extreme accumulation of the pheromone
during the rmn of algorithm .Thus the high difference
between pheromone trails will be avoided. The lunits
imposed by the MMAS will be checked after each
iteration. if we have T(t/>T,, Wwe set; T, = T,
analogously T,;(t)<t ., we set T ;=T . Alsc note that by
enforcing 7,,,>0 and 1if 0,< for all solution components
any solution component may probably be chosen.

For every choice point, the MMAS convergence
occurs when all solution components have pheromone
trails T, except one solution has tT,,. In such a case, the
choice of max pheromone will construct the solution
which is regarded the best solution found by the
algorithm, and it is constructed with probability pbest that
is higher than 0. Hence the solution component with T,
is the right choice that an ant choose to construct the
best solution at each point. Obviously t,. and T,
directly affects the probability of selecting the solution
component at any choice point (Stutzle and Hoos, 2000).

Pheromone trail initialization: Pheromone trail
initialization is done by setting t(o) to arbitrarily high

1062



Res. J. Applied Sci,, 11 (10): 1060-1068, 2016

value and consequently all trails will correspond 1,,.(1) .
This kind of imtialization makes the exploration of
solutions go up during the first iteration of algorithm.
Because of trail evaporation (determined by parameter p),
the difference between pheromone trails after first
iteration will be of a ratio p, after the second one it will
bep?...etc.

The value (1-p) (avg T4,) (1-py) 18 the ratio between
Toin @nd the amount of pheromone deposited on a solution
element. Depending on the chosen empirical parameters
setting, this ration is significantly higher than the relative
difference among the pheromone trail when it is initialized
at 1. When the pheromone trail is initialized at t_,, the
selection probabilities of Eq. 1 will develop slowly. Thus,
the exploration of solutions is preferable. The experimental
results confirm the conjecture that the larger exploration
of the search space due to setting t(1) =T, lmproves
MMAS’ performance (Stutzle and Hoos, 2000).

MATERIALS AND METHODS

The proposed improve path planning design: This section
present the design of the new method to find the optimal
path planning. First, we get 2D workspace environment
with static and dynamic obstacle expressed by regularity
grids. Second, the pheromone trails are updated by mixing
with D* algorithm and the ants accumulate the deposit
pheromone on the nodes they have visited from goal to
start nodes state and it 1s checked if the gate raise state 1s
found to make it non traversable cell. Later, the robot (ant)
moves [rom start state based on tour construction
probabilities through the traversable cell and it avoids the
dynamic obstacle until it reaches the goal state. Fig. 1
shows the design structure of the main stage for building
the new method to find the optimal path.

Determined the environment: Tn the beginning of design,
the new method must select any environment image from
the robot's environment library stored in the main storage
and displays it as a grid cell environment on screen. Then
start state position (nest) on the free space of the path 1s
selected by the mouse first click and this cell 13 converted
to red color and displayed it on screen. The second
mouse click on another free space selects the goal state
position (food) and converts this cell to gold color. A
class data structure labeled “node™ 1s designed which
containg all the needed information and the dynamic array
of type node is defined to store the information gotten
from image environment. Fach cell in the image
environment is decomposed to define the coordinate
position in terms of height and width, tag and statue.
Pheromone trail updating mixing with D*algorithm

Determined the
Environment

!

Pheromone trail
updating by mixing |,
with D* algorithm

Manipulate Gate
Raise States

strategies
Move Robot based Create and Avoid
on tour construction Dynamic Obstacle
probabilities

Il

v

Evaluation of
Proposed Method

Fig. 1. The structure of improved method to find robot
path planning.

strategies Pheromone trail updating maintains propagated
information about the intensity of the pheromone trails
values T;(t) by mixing with D* algorithm strategy which
calculate path costs to the states in the space. The
propagation takes place through the repeated pheromone
deposition. It 18 expanded to modify pheromone trails
values T;(t) to its neighbors after each iteration. These
neighbors are in turn added ants to continue propagation
and to modify pheromone trails values t;(t) until the start
state  (nest) 18 found. Pseudocode procedure
PheromoneTrailUpdating 1llustrated in Alogrthim 1s built
in number of steps to find pheromone trail updating Eq. 2.
The first step is done by selecting the initial value of
evaporation rate fi equal to 0.98, then goal state (food
location) 18 put in the queue add ants propagation (Insert
procedure) as a current state (location). The proposal
pseudocode procedure to construct pheromone trail
updating.

Procedure PheromoneTrailUpdating { )
Begin
Goal_i=goal_pos_x;
Goal_j = goal_pos_v;
o =0.98; // select the initial value of ?
goal pher=0.0;
Tnsert(Openlist, goal); / add ant to queue prop agation
repeat
Begin
node X =DequeueOpenList (); /moving ant to propagation
¥ tag ="Close"
/1 expanded by finding the eight neighbor locations ¥ of current. position X
FindNeighbor (Y, X)
for each Neighbor Y of X do
begin
PheromoneTrails (X ,Y, OpenList)
GateRaiseState (X)
SortQueue (Openl.ist)
end
until (X_status = "Start™)
end
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Fig. 2. The 8 direction search of the ant.
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In the second step, the current state (location) 1s
expanded by finding the eight neighbor states (locations)
(FindNeighbor preedure). Figure 2 shows the discrete set
of possible connections of the & directions neighbor
nodes in the graph taken from a umform resolution 2D
grid: Up, Down, Left, Right, Up-Left, Up-Right, Down-
Left and Down-Right .

In the third step, the intensity of the pheromone trails
value T, and the heuristic mformation 1, are computed
(PheromoneTrails Pseud ocode procedure is shown in
Fig. 3 for each state on neighborhood. The neighborhood
are checked if the status state is Obstacle, it is not given
pheromone trails values T, (t)(like D* given high value
10000). If the status state is clear, then its position is
checked if ant move on diagonal of current state (location)
the T;(t) values is sum by 1.4 or it is sum by 1 in the case
of horizontal or vertical position. Then it's multiplied each
case by evaporation rate fi. Also the value of heuristic
mformation T, 15 found by the distant between any
neighbor locations to the goal position (food).

The last step mampulates the Gate Raise States by
procedure GateRaiseState which 1s used to check if two
diagonal vertex neighbor locations of current position of
ant are Obstacles status, then ant can not move to it
because its size not passed through Hence, current state
1s a gate raise state and 1t’s closed by changmng its status
type to obstacle. The pseudocode procedure Pheromone
Trails is computed the values of pheromone trails and the
heuristic information.

Procedure PheromoneTrails (X, Y, OpenlList)
Begin
it (¥ tag =="WNEW") then
if (Y_status ="Obstacle” ) then
Y pher =10000;// ant is not given pheromone trails values represent a very
large value
else if (¥ neighbor i 9% iold) and (¥ neighbor j? X jold) then
Y_cost=X_cost+ 1.4

Y pher=TY cost*;

else

Y cost=X cost+ 1.0;
Y_pher=7Y_cost*fi;

endif
Y_her = sqr((Y_neighbor i -
goal_pos_y)"2),

endif

Tnsert{OpenList, Y neighbor);
endif
end

goal pos x)*2 + (Y_neighbor j

Moving robot based on tour construction probabilities: In
this section, the robot (ant) moves to next location at each
iteration by finding the best solution depending on tour
construction probabilities. It travels through free cell
(location) and it avoids the dynamic obstacle until it
reaches the goal state. Procedure MoveRobotTourConst
present m Alogrthim a number of steps to find tour
construction. In the begmmng the start state (nest) is
selected as a current node (position) for moving the ants,
giving the weigh values ¢ and p which have the
importance of the pheromone and heuristic values. Then
a procedure CrateDynObs 1s used to select randomly a
position i a free space environment to create a dynamic
obstacle. The robot (ant) then must move depending on
a probabilistic decision to next location in the
neighborhood which has the best solution and
convergence is repeated at each iteration (iteration-best
ant) until the robot reaches the goal position (food). Tt
uses the procedure FindNeighbor to find the eight
neighborhood nodes (locations) to move from current
node (position). Procedure UpdateDynObs presents the
moving dynamic obstacle in a random position of a
neighbor clear space environment.

After that the tour construction probabilities are
computed by Eq. 1 which depends on the pheromone trail
T4, and on a locally available heuristic information 8, for
all locations (nodes) of neighbor. The decision of best
solution to ant that has minimum probability compared to
other ants in neighbor locations. The neighbor locations
{(nodes) are testing to not contamn a static or dynamic
obstacle before computed it. This best ant which has the
best solution 1s moving to the new position to be a
current node and convergence is repeated until it reaches
the goal position (food). At last, the result of optimal
path is shown as the path displays on the selected
dynamic environment as a green color, No. of iteration
(locations) of path, total path costs and time occupy to
find a path.The pseudocode procedure
MoveRobotTourConst 1s construct for moving the ants
to find the optimal path based on tour construction
probabilities.

Procedure MoveRobotTour Const ()

begin

ff Starting with start node to find the optimal path plarming as current node
X
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Fig. 3: Optimal path planning using improve MMSA algorithm

X_curri = start_pos_x
X currj = start_pos y
/ given an initials weigh values of « and 3
o =3;
p=1
J// find the eight neighborhood nodes Y of current node X.
FindNeighbor (Y,X)
J/ create the random position of dynamic obstacle.
CrateDynObs(X1, temporal_k )
repeat
begin
Jupdating randomly neighbor position of dynamic obstacle.
UpdateDynObs (X1, ternporal k)
// calculated the values of tour construction probabilities for each neighbor
locations
for each neighbor ¥ of X do
if (Y status ="Obstacle” or Y status ="Dobstacle” ) then
Pli] = ( (state[ Y].pherm)™ *(state[Y].hur) ) / 2((state[Y].pherm) ™
*(state[ Y].hur) "? );
J/ tind the minimum best value by sorting it and given its position
for each item of (P[]) do
if (P[] < min_best_pphr) then
begin
min_min_best pphr="P[]
mini_ pphr = neighbori[]
minj pphr =neighborj[]
end
X _corri =mini_ pphr;
X_corj =minj_ pphr;
iter no=iter no+ 1;
X_SetPixel (Green),
end
until (current_position = goal_position or iter_no = max_itr)
end

Simulation: Some simulations are present i variant cases
to validate the feasibility of the new method. This variety
different size of dymamic environments, nmunbers and
shapes of static obstacles, number of gate raise states
closeted before found an optimal path, peosition of
dynamic obstacle selected randomly in valid (free) space

of environment, and m the continually moving dynamic
obstacle in random variant neighbor positions until the
robot reaches the goal state. This simulation results are
implemented in C# Microsoft Visual Studio 2010 on
Pentium 4 PC. We mmplemented the mmprove MMSA
algorithm on same dynamic environment. To illustrate
results choose small enviromment (10*10) pixel size and
select the start state at position (0,9) and goal state at
position (7,0) as an illustrated example.

An Improved MMSA algorithm implemented: At first, the
improve MMSA algorithm is implemented to find the local
path plarming which is shown as a green color. There are
different cases that are tested to find and study the
results of implementation with the same value of
evaporation rate p that equals 0.98 and in random location
of dynamic obstacle of blue color. The first testing case
is implemented by giving the same value equal tol for
both weigh of pheromone « and weigh of heuristicpp. The
results illustrated in Fig. 3a show No. of iteration
equals13, the total path cost equals 99 and a time occupy
equals 1.06 sec.. The second test presented in Fig. 3b
changes the value of a to 2 only, it leads to the same
results of first test except time occupy is equal to 1.40
sec.. In the thurd test, the change of value « to 3 finds the
best results shown in Fig. 3c and gives a smooth and
more optimal local path with total path cost = 98.2 and
time occupy is 1.36 sec. The fourth test is implemented by
giving a weigh value of pheromone ¢ = 1 which 15 less
than the weigh value of heuristic p = 3, the path changes
to another locations as shown in Fig. 3d and the results of
the local path are No. of iterations that equals 14, the total
path cost equals 118.6 and a time occupy equals 1.5 sec.
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Robot Path Planning
based on MMAS Algorithm in Dynamic Environment
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reset Time occupy 00:00:01.4081

Fig. 4: Finding local path by improve MMSA algorithm when avoid dynamic obstacle

Avoid dynamic obstacle: The local path 1s found in the
same environment and exploits the same method used
above except that the dynamic obstacle is intersection
with robot in the same position. In this case the robot
(ant) avoids collision with dynamic obstacle and moves
away 1n best neighbor location of ant that has minimum
probability. Fig. 4 illustrates that the total path cost
changes to 98.6, a time occupy equals 1.4 sec., the local
path shown mn green color 18 different from the above path
shown n Fig. 3¢ without intersection dynamic obstacle.

RESULTS AND DISCUSSON

Experiment results: Finally the improve MMSA algorithm
15 implemented to find the local path planning on five
different complex dynamic environments size 5050 cells.
The experiment simulation result are found by giving the
same value of evaporaton ratep that equals 0.98,
choosing a different weigh values of pheromone ¢ and
heuristichp and also selecting different positions of start
and goal as show in Fig. 5. The experiment sunulation
result illustrated in Fig. 5a 1s implemented on a selected
environment that contains the static obstacles which are
organized in curve shapes and some of these curve block
obstacles are open from different directions. The
positions of start and goal are selected to lie on both
sides of long curve sequence of static obstacles that is
forced to choose a large weigh value of « = 7 to get the
converge solution to find the local robotics path. Figure.
5b 1s mmplemented on environment contain the similar
organization of curve shapes static obstacles overlapping
each other. The positions of start and goal are chosen to

be adapt from each other and outside of curves. The
improve MMSA algorithm finds the convergence solution
and local robotics path by giving the value of « equal 3
and value of p=1. The improve MMSA algorithm is also
implemented on simple environment contamn vertical
sequence of obstacles and big area of free space. It
reaches the convergence solution in small value of ¢ = 1
and value of B = 1 and it finds local robotics path as
llustrated m Fig. Sc.

The next expermment sinulation shown in Fig. 5d 1s
implemented on environment that has the static obstacles
which are established in circular sequence shapes and
some of circular block obstacles are open from different
positions. The improve MMSA algorithm is forced to get
the convergence solution at a value of ¢ = 5 and value of
B =1 and find the local robotics path. The last two
experiments simulation are implemented on same dynamic
environment that contains large numbers of static
obstacles which have different shapes and sizes and lies
randomly in environment. Tn the middle it comnects a
horizontal sequence of obstacles that it closes in left side
and open from the right side. The first experiment
simulation result illustrated in Fig. 5e is implemented by
choosing the positions of start and goal that lie on upper
left corner and lower left corner respectively. The improve
MMSA algorithm reaches the convergence solution in a
value of @ = 3 and value of B = 1 and finds local robotics
path. The second experiment simulation result is
implemented on the same environment but the positions
of start and goal are selected to lie on both sides of the
middle horizontal sequence of obstacles. The unprove
MMSA algorithm cannot reach the convergence solution
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reset (3 ¢
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Total Path Cost A
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Env No of ants No. of Tatal path Time
1 1 e o B prnpaoajinn Tteration cost ocenpy sec
1 a Improve MMSA 21.13 27.17 1 7 1 1531 65 2491.8 382
1 Basic D* 21.13 27.17 1 33184 3.90
2 b Improve MMSA 26.80 25.24 2 5 1 1134 43 1052.4 2.96
2 Basic D* 26.80 25.24 2 2559.8 10.06
3 [ Improve MMSA 349 3.00 0 1 1 1208 49 1238.6 2.98
2 Basic D* 349 3.00 0 1238.6 349
4 d Improve MMSA 24.24 3845 2 5 1 1689 64 2281.2 4.08
4 Basic D* 24.24 3845 2 5857.8 11.23
5 e Improve MMSA 1.40 2.48 3 3 1 1541 91 5086.4 5.64
5 Basic D* 1.40 2.48 3 5380.6 32.89
5 f Improve MMSA 16.23 15.25 3 1 0 1346 66 24778 4.76
5 Basic D* 1623 1525 3 32492 10.04
until it gives the value of ¢ = 26 with the value of heuristic reaches the convergence solution in a small value of ¢ =

B = 1. But when the heuristic information is ignored by 1 and finds the local robotic path. Table (1) illustrates the
giving value of p = 0, the improve MMSA algorithm overall results of implementation shown in Fig. 5
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compared to the results generated from the basic D*
algorithm on the same dynamic environment and the same
start and goal positions. The table also contains more
requirements and results of improved MMSA algorithm
like a given values of « andp, No. of ants propagation, a
number of the ant moving iterations, time occupy in sec.
and the total path cost.

CONCLUSION

This researcher presents a new method for on-line
robotic path planmng m dynamic environment. It finds the
local and efficient path in variant complex environment
maps. The improved MMAS algorithm can achieve the
best performance by a combmation of optimization
algorithms to improve the solutions generated by the ants
with search algorithms. The improve MMSA algorithm
reaches the convergence solution depending on balance
between the values of ¢ and B with the positions of start
(nest) and goal (food) and the numbers of static obstacles
that have different shapes and sizes and lie randomly on
environment to find local robotic (ant) path.

The comparison results proved that the new fusion
unprovement 1s more efficient m time occupy and total
path cost than basic D* algorithm. The experiments
simulation result from the new method show that the
robot (ant) avoids collision with dynamic obstacle and
moves away 1 best neighbor location of ant that has
minimum probability. Also the experimental results find
the optimal local path with minimum iterations, minimum
total path cost and mimimum time occupy depending on
the complexity of dynamic environment which 1s based on
the number of obstacles or the free space the robot
passes through moving the ant (robot) and mumber of
cross dynamic obstacles through moving it.
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