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An Improved Artificial Bee Colony Algorithm for Constrained Optimization
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Abstract: Artificial Bee Colony algorithm (ABC) is one of the most popular swarm intelligence algorithims
possessing few control parameters and being competitive with other population-based algorithms. However,
there 1s still an msufficiency m this algorithm regarding its convergence behavior. This algorithm 15 good at
exploration but poor at exploitation and yet tackling the issue becomes more challenging if the problem involves
constraints. In this research, an improved constrained ABC (1ABC) algorithm 18 proposed to address this class
of optimization problems. The modifications that have been introduced in 1ABC include a novel chaotic
approach to generate imitial population and two new search equations to enhance exploitation ability of the
algorithm. Tn addition, a new fitness mechanism, along with an improved probability selection scheme has been
devised to exploit both feasible and informative infeasible solutions. The proposed algorithm has been tested
using CEC2006 benchmark suites. The performance of the 1ABC algorithm has been compared agamst the state
of the art constrained ABC algorithms. According to the experimental results the proposed algorithm
demonstrates a comparative performance and in some cases superior to the algorithms under study.
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INTRODUCTION

Almost all real-world optimization problems in
science, engmeering and mndustry mvolve with a munber
of constraints. In general, Constramed Optimization
Problem (COP) can be formulated by Eq. 1:

minf(x)
stgi(x)<0 j=12,.,m ()
hj(x):0 j=m+l, m+2,..,1

where, x = (x,, X;, ..., ;) and 1 <x,<u, with |, and 1, which are
lower bound and upper bound, respectively.

It 1s well known that solving COPs is a challenging
task. Optumization methods to solve constrained problems
can be divided into two groups; Derivative-Based and
Derivative-Free Methods. As there have always been
real problems unavailable,
derivative-based methods are often inefficient to solve

where derivatives are
these problems. However, derivative-free techniques do
not have such limitation and can effectively apply for this
class of optimization problems. As an important branch of
dervative-free methods, Evolutionary Algorithms (EAs)
have shown remarkable success to solve COPs problems.
The most promment EAs have been introduced in the
literatures are Genetic Algonthm (GA) (Tang ef al., 1996),

Differential Eveolution (DE) (Stom and Price, 1997), Ant
Colony Optimization (ACO) (Dorigo and Birattari, 2010),
Particle Swarm Optimization (PSO) (Kemnedy, 2010},
Artificial Bee Colony (ABC) (Karaboga, 2005), Bacterial
Foraging Optimization (BFOA) (Passino, 2002),
Biogeography-Based Optimization (BBO) (Simon, 2008),
Artificial Immune Systems (ALS) (Farmer et al., 1986).

Among these algorithms ABC has been recently
proposed. It 1s an effective algorithm for global
optimization. This algorithm has the advantage of
employing few control parameters. It has been shown that
the performance of the ABC is competitive with other
population-based optimization algorithms and the
algonthm requires a fewer number of function evaluations
to reach to an optimal solution (Karaboga and Basturl,
2007a, b, 2008; Karaboga and Akay, 2009). However, the
solution search equations of the ABC algorithm are good
at exploration but poor at exploitation which results in
poor  convergence. Moreover, for constrained
optimization problems there is also the need to apply a
good constraint handling method. Aiming at improving
the performance of constrained ABC algorithm m this
paper some modifications are proposed.

Artificial bee colony: ABC algorithm is a recently
introduced population-based algorithm proposed by
Karaboga (2005) which simulate the foraging behavior of
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honey bee colonies. The colony of artificial bees includes
three groups of bees: employed bees, onlooker bees and
scout bees. Half of the colony consists of employed bees
and the other half consists of onlooker bees. Employed
bees first exploit the food source and gathering required
information. Then, they carry the information about the
position of food source back to the hive and share this
information with onlooker bees.

Onlooker bees are waiting to the hive to received the
mformation from employed bees and then choose food
source with better quality using probability selection
mechamsm as a proportional of the quality of food source.
Therefore, the food sources with good quality attract
more onlooker bees compared to food source with lower
quality. If the quality of the food source 1s not unproved
through a predetermined number of iteration, the food
source will be abandoned by its employed bee and
employed bee becomes a scout and starts to search for a
new food source randomly in the neighborhood of the
hive. Through the search process, scout bees are
responsible for exploration while exploitation is done
using employed and onlooker bees.

In ABC, each food source represents a possible
solution to the problem and the nectar amount of each
food source is the fitness value of the related solution.
The number of employed bees or the onlooker bees is
equal to the number of solutions SN mn the population. At
initialization step, a population of SN solutions are
randomly generated using Eq. 2:

X j =1;+rand(0, 1)u;4;) (2)
Where:
1 =1,2,..,SN
] = {1, 2, ..., d} and d is dimension of problem

|, and u; = The lower and upper bounds for the dimension
j, respectively

After initialization, the population of solution is
repeated in a cycle of the employed bees, onlookers and
scouts. HEach employved bee generates a new food source
in their neighborhood using Eq. 3:

Vij = X0 (X X, j) (3)
where, ke{l, 2, ..., SN} and je{l, 2, ..., d} are randomly
chosen indexes, k has to be different from i, ¢, ; is a
random munber m the range [-1, 1]. After each v, 1s

calculated the fitness value of this solution is evaluated
and a greedy selection mechamsm 1s applied comparing x;
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and v,. If the fitness of v, is better than fitness value of x,,
then it will be replaced with x, and x; will be removed,
otherwise x; 1s retained in population.

After all employed bees complete their searches, they
share therr information about fitness and position of
An onlooker bee
chooses a solution using probability value associate with

solutions with the onlooker bees.

the solution where p; 1s defined as follows:

fit,

4
oo ()
1=1 1

P =

where, fit, 15 the fitness value of solution 1. The higher the
value fit; of has more probability that the ith solution is
selected. Once the onlooker has selected solution x, a
modification is done on the solution using Eq. 3. If a new
solution has better quality than the old solution, the old
solution 1s replaced with new solution otherwise the old
solution remained in the population.

If a solution cannot be improved further through a
predetermined number of trials (limit), the solution is
abandoned and the

becomes a scout.

corresponding employed bee
The scout produces a solution
randomly using Eg. 2. The detailed pseude code of
original ABC algorithm i1s presented in the Algorithm 1.

Algorithm 1 (Original Artificial Bee Colony algorithm):

Tnitialize the population of solution
Evaluate the initial population
cycle=1
Repeat
Employed bee phase
Apply greedy selection process
Calculate the probability values
Onlooker bee phase
Scout bee phase
Memorize the best solution achieved so far
cycle = cycletl
Until cycle = maximum cycle number

In recent years the vast majority of unconstramed
ABC algorithm have been presented and applied for
practical problems (Akay and Karaboga, 2012, Gao et al.,
2014; Banitaleb: ef af., 201 5, Karaboga and Gorkemli, 2014,
Kiran et al., 2015).

Literature review: ABC algorithm has been originally
introduced to address unconstrained optimization
problems (Karaboga, 2005). Then, this method 15 adapted
to deal with constrained optimization problems. The
constramts and mterferences
COPs more challenging than

presence of various
between them makes
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unconstrained optimization problems. In this study, we
briefly present the available constrained ABC algorithms
in the literature.

The first attempt to apply ABC algorithm to solve
COPs is done by Karaboga and Bastruck (2007b). To
cope with constraints, Deb (2000)’s mechanism is
employed to be used instead of the greedy selection
mechanism due to its simplicity, computational cost and
fine tuning requirement over other constraint handling
methods. Because initialization with feasible solutions is
very time consuming and n some situation, impossible to
generate a feasible solution randomly, the constrained
ABC algorithm does not consider the mitial population to
be feasible. As alternative Deb’s rules are employed to
direct the solutions to feasible region of search space. In
addition, the scout bee phase of the algorithm provides a
diversity mechanism that allows new and probably
infeasible individuals to be in the population. Scouts are
generated at a predetermined period of cycles for
discovering new solution randomly. This period 1s
another control parameter called Scout Production Period
(SPP). At each SPP cycle, it is controlled if there is an
abandoned solution or not. If there 1s, a scout preduction
process 1s executed. The numerical performance of the
proposed ABC algorithm is evaluated and compared with
constrained PSO and DE algorithms and results show that
ABC algorithm can be effectively applied for solving
constrained optimization problems.

Mezura-Montes et al. (2010) presented Smart Flight
ABC (SF-ABRC) algorithm to improve the performance of
constrained ABC where smart flight operator 1s applied in
scout bee phase to direct search towards promising
region of the search space. Therefore, if the best solution
is infeasible, the trial solution has the chance to be
located near the boundaries of the feasible region of
search space. However, if the best solution 1s mnfeasible,
the smart flight will generate a solution in promising
region of search space. In addition, the combinations of
two dynamic tolerances are also applied mto SF-ABC to
original COP mto
optimization. The numerical results demonstrate the

transform  the unconstrained
competitive performance of SF-ABC with constrained
ABC (Karaboga and Basturk, 2007b).

A modified ABC was mtroduced by Karaboga and
Akay (2011) to solve COPs. In this algorithm, a new
probability selection mechanism is presented to enhance
i the
population where infeasible solutions are mntroduced
inversely proportional to their constraint violations and

diversity by allowing infeasible solutions
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feasible solution defined based on their fitness values.
To recogmze this algorithm through this study the
abbreviation MABC will be used.

Ancther modified constrained ABC was developed
by Subotic where Multiple Onlooker bees (MO-ABC) are
applied into original constrained ABC. In this algorithm,
three trial solutions are applied to form a new solution.
The numerical performance of the algorithin when
compared with the original ABC shows comparative
results.

Memwra-Montes and Cetina-Dominguez  (2012)
presented a Modified ABC (M-ABC). This algorithm
consist of four modifications on the selection mechanism,
the equality and boundary constraints and scout bee
operators compared to the original constrained ABC. The
mechanisms to handle equality and boundary constraints
are enhanced with the aim to support a more appropriate
approach to the feasible region of the search space. A
binary tournament selection based on feasibility is
supplanted with the fitness selection of solutions applied
in the original ABC. Tn addition, smart flight operator is
employed to be used in scout bee instead of the uniformly
random approach in constrained ABC (Karaboga and
Basturk, 2007a, b). The numerical results show that
M-ABC provides comparable results with respect to
algorithms under comparison.

An efficient constrained ABC (eABC) algorithm was
suggested by Babaeizadeh and Rohanin where two new
solution search equations was introduced, respectively
for employed bee and onlocker bee to enhance the
exploitation of algorithm.

A Genetic Inspired ABC algorithm (GI-ABC) was
introduced to adopt GA n the process of replacement of
exhausted solutions (Bacamn and Tuba, 2012). In this
algorithm, uniform crossover and mutation operators
from GAs are applied to improve the performance of ABC
algorithm.

Stanarevic et al. (2011) suggested Smart Bee ABC
algonthm (SB-ABC) to solve constrained problems. In this
algorithm, smart bee is used to memorize the solutions and
their fitness. Then, the best solution is replaced with a
new random solution if the new solution is unfeasible or
if the new solution is feasible but it does not have better
fitness. The numerical experiments show efficiency of the
method.

ABC-BA 18 a hybrid algorithm presented by
Tsai (2014) that integrates ABC and Bee Algorithm (BA)
to solve COPs. In this algorithm, individuals can perform
as an ABC individual in ABC sub-swarm or a BA

individual in the BA sub-swarm. In addition, the
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population size of the ABC and BA sub-swarms change
stochastically based on current best fitness values
achieved by the sub-swarms. Experimental results
demonstrate that ABC-BA outperforms ABC and BA
algorithms, respectively.

Constrained ABC algorithm was also applied to solve
many real-world engmeering problems in recent years.
Brajevic proposed a Constrained Artificial Bee Colony
(SC-ABC) and applied on several standard engineering
benchmark problems of discrete and continuous variables.
The numerical results then were compared to results
obtained from Simple Constrammed Particle Swarm
Optimization Algorithm (SiC-PSO) which show a very
good performance. Akay and Karaboga (2012) used ABC
to solve large scale optimization problems as well as
engineering design problems. The numerical results show
that the performance of ABC algorithm is comparable to
those of state of the art algorithms under comparison.
Upgraded Artificial Bee Colony (UABC) algorithm was
also mtroduced for constrained optimization problems
by Brajevic and Tuba to improve fine-tuning features of
the modification rate parameter and applymng modified
scout bee phase of the ABC algorithm. This algorithm was
then tested on several engineering benchmark problems
and the performance was compared with the performance
of the Akay and Karaboga (2012) algorithm. The numerical
results show that the UABC produces better results. For
more information see the recent survey on constrained
ABC.

MATERIALS AND METHODS

Improved constrained artificial bee colony: The initial
population plays an important
mnplementation of population-based algorithms as it
affects the global convergence and the quality of the final
solution. Simple random initialization is the most
frequent method that has been applied to generate initial
population. However, generating initial population using
this method is not necessarily exhaustive and this affects
the performance of the ABC algorithm. Babaeizadeh and
Ahmad (2014a) applied chaotic search mechanism to
mitialize population for constramed ABC. Then, this
method compared with the ABC (Karaboga and Basturk,
2007) and numerical results show the competitive results.
A modified constrained ABC algorithm (mcABC) was
proposed in which chaotic mechamsm as well as
opposition based method was applied into imtialization
phase of ABC algorithm to enhance the global
convergence of algorithm. The numerical results
demonstrate the effectiveness of the proposed method
(Babaeizadeh and Ahmad, 2014b).

role in efficient
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Algorithm 2 (Initialization approach):
fori=1to SN/2
forj=1tod
Generate a uniform random number ©
in[0,1]
Lety =0-1
Generate an integer random number k in [50, 100]
fork=1to K
0 =mad(#0, 1)
i = (1-6)(1-2modck, 2
end
;= 10,51y
end
end
Set the individual counteri=1and j=1
for i=8N/2 to 8N

forj=1tod
XiT 1]+u]-ll
end
end

Enhanced ABC (EABC) algorithm 1s also proposed
for constrained optimization problems where two new
solution search equations are introduced for employed
bee and onlooker bee phases, respectively. In addition,
both chaotic search method and opposition-based
learning mechanism are employed to be used in
population mutialization in order to enhance the global
convergence when producing initial population.

In this study, aiming to enhance the diversity of the
initial population of iABC algorithm, a novel chaotic
mechamsm along with opposition-based learning 1s
introduced. This procedure is described in Algorithm 2.

After mitialization, the population of solutions 1s
repeated in a cycle of the search procedures of the
employed, the onlooker and scout bee phases. In order to
enhance exploitation ability of algorithm a new solution
search equation 1s proposed for employed bee phase as
follows:

_ Xu +,Yij (Xb,] _Xij )+“1] (Xrlj _Xu )+G1] (XI’ZJ _Xu ) 1{j <MR

K otherwise

(5)
where, 1, 1, are randomly chosen index has to be different
form i and v; is a random number between [0, 0.5], p; and
o; between [-0.5, 0.5], T; between [-1, 1]. R; is uniformly
distributed random number in the range [-1, 1] and MR 1s
a control parameter which controls the mumber of
parameters to be modified.

After generating a new solution, Deb’s rules are
applied in selection process. Using Deb’s mechamism,
either the new solution 1s memorized or old solution. The
framework of employed bee phase is given in
Algorithm 3. After all employed bees complete their
searches, they share their mformation related to the
fitness values and the positions of their solutions with the
onlooker bees.

X1 (xj —xrlj)
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What makes COPs more difficult to handle is the
presence of various constraints. As informative infeasible
individuals can also provide useful information about the
optimal direction, it 185 necessary to keep a number of
infeasible solutions in the population. In probability
selection mechanism a large number of individuals in the
population are feasible.

Algorithm 3 (Employed bee phase for iABC):
fori=1:8N
forj=1.d
Produce a new solution v; using Eq. 5
end for
Tf no parameter is changed, choose a parameter randomly and change it
form solution x; using Eq. 5
Evaluate the solution v;
Apply the selection process between v, and x; based on Deb’s Method
Tt solution x; does not improve trail+1, otherwise trail; = 0
end if

Therefore, informative infeasible individuals m
the population have little chance to survive into the
next populaton. Motivated by the above-mentioned
consideration, to improve the selection mechanism, a
modified probability selection mechanism is proposed to
balance the population of feasible individuals and
infeasible individuals which are close to the feasible
reglomn.

The new probability selection mechanism is based on
the following instruction to calculate the probability p; for
solutionx,1=1,2,..,SNas Eq. &

0.5+ g}‘ +H0.5+2¢e)-2 if solution is feasible
o fit,
b= violation,
0.5- ——————*—+(0.5+2e 2= ifsolution is infeasible
E] o violation,
(6)
Where:

violation, = The constraint violation of solution
%, and fit; = The fitness value of the solution x;

The value of fit, can be calculated as follow: if x; 1s
feasible:
1

£>0
(1)

fit, = L £<0 (7)
]
1 £=0

Otherwise 1f 1t 13 mfeasible:

1

- - =0
(f; violation, )
fit, = L £<0 (8)
violation,
% ;=0
violation,
and violation 1s defined as follow:
violation(x) = Ei'\ﬂiolation1 (x) (9

i=1

The distance of a selution x from the jth constraint
can be created as:

max{0, g (x)} ifl<i<p

(10)
max {0, |, (x)]-8} if1<j<q

violation, (x) = {

where, & is the tolerance value for the equality
constraints. An onlooker bee then evaluates the
information shared by employed bees and selects a
solution with a probability associated with its nectar
amount. After solution selection, onlooker bees produce
modification on the position of the selected solution by
taking advantage of the global best and random solution
to guide the candidate solution toward promising region
of search space using Eq. 11:

v. = {Xﬁxu (%, % 4 (%%, ) Ry =MR (11)
il

X, P, (XX ) otherwise

where, %, and x, are uniformly random sclution and
je{1,2, .., d}, %; is a random number in [-1, 1], n; and p,
are random number in the range [0, 1]. Similar with
employed bee phase after generating new solution using
Eq. 11, the new solution is compared with current solution
using Deb’s rules. If the new solution has better equality
it will remained in the population and the current solution
removed otherwise the current solution 1s remained. The
framework of onlooker bee phase 13 given m Algorithm 4.
After distribution of all onlooker bees, if a solution
can not improve further through predetermined number of
cycles (limit) it is abandoned and replaced with a new
solution discovered by scout bees. The scout produces
a new solution using smart flight operator defined in
Eq. 12:
v, = X, (%% -0 (%, X)) (12)

18
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Table 1: The main characteristics of the test problems

Functions Types n s LI NI LE NE o

g01 Quadratic 13 0.0111 9 0 0 0 6
g02 Nonlinear 20 99.9971 1 1 0 0 1
g03 Polynomial 10 0 0 0 0 1 1
204 Quadratic 5 52.1230 0 6 0 0 2
g0s Cubic 4 0 2 2 0 3 3
206 Cubic 2 0.0066 0 5 0 0 2
207 Quadratic 10 0.0003 3 2 0 0 6
208 Nonlinear 2 0.8560 0 4 0 0 0
209 polynomial 7 0.5121 0 3 0 0 2
glo Linear 8 0.0010 3 0 0 0 3
gll Polynomial 2 0 0 1 0 1 1
gl2 Quadratic 3 4.7713 0 1 0 0 0
gl3 Quadratic 5 0 0 0 0 3 3
gl4 Nonlinear 10 0 0 0 3 0 3
gls Quadratic 3 0 0 0 1 1 2
gl Nonlinear 5 0.0204 4 34 0 0 4
gl7 Nonlinear 6 0 0 0 0 4 4
gl8 Quadratic 9 0 0 13 0 0 6
g19 Nonlinear 15 334761 0 5 0 0 0
g20 Linear 24 0 0 3] 2 12 16
g21 Linear 7 0 0 1 0 5 6
g22 Linear 22 0 0 1 8 11 19
223 Linear 9 0 0 2 3 1 6
224 Linear 2 79.6556 0 2 0 0 2

where, @, 1s random number in [-1, 1] and r is random
mndex that have to be different from 1€{1, 2, ..., SN}, x, 18
the best solution found so far.

Algorithm 4 (Onlooker bee phase for iABC):
t=0,i=1
Repeat
if random <p; then
t=tr1
forj=1d
Produce a new solution v; using Eq. 11
end for
If no parameter is changed, choose a parameter randomly and change
it form solution x; using Eq. 11
Evaluate the solution v;
Apply the selection process between v; and x; based on Deb’s Method
If solution x; does not improve trail, = +1, otherwise trail; = 0
end if
i=itl
i=1mod(SN+1)
until t = SN

Numerical experiments and comparisons: In order to
evaluate the performance of 1ABC algorithm and show the
efficiency and superiority of the proposed algorithm,
24 well-known benchmark problems form CEC2006
(Liang et al., 2006) are applied.

The proposed algorithm 1s evaluated and compared
with four state of the art constrained ABC algorithms. The
1ABC algorithms as well as other algorithms in comparison
are coded in MALAB environment. Each problem runs
30 times and statistical results are provided mcluding
the best, median, mean, worst results and the standard
deviation which can be seen in study.

Benchmark test problems and parameter settings: The
main characteristics of 24 benchmark functions are shown
in Table 1. Table 1 describes various kinds of these test
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Table 2: Parameters setting

Pararmeters Svimbols Values
Solutions number SN 20
Maximum cy cle number MCN 6000
Modification rate MR 0.8
Delta ) 0.0001
Epsilon 3 0.01

functions (linear, non-linear, polynomial, quadratic and
cubic) with different numbers of decision wvariables,
different types (linear mequalities, linear equalities,
nonlinear inequalities and nonlinear equalities) and
numbers of constraimnts. In Table 1, p 1s the estunated ratio
between the feasible region and the search space, LI is the
number of linear inequality constraints, NT is the number
of nonlinear inequality constraints, LE is the number of
linear equality constraints, NE is the number of non-linear
equality constraints, a is the number of constraints active
at the optimal solution and n 1s the number of variables of
the problem. However as all the algorithms considered in
comparison were not able to obtain feasible solutions for
220, g21 and g22 we exclude these problems from our
experiments. In addition, the value of each parameters
used are given in Table 2.

RESULTS AND DISCUSSION

The numerical performance of 1ABC algorithm was
compared with original ABC (Karaboga and Basturk,
2007a, b), MABC (Karaboga and Alay, 2011), M-ABC
(Mezura-Montes and Cetina-Dominguez, 2012), SF-ABC
(Mezura-Montes et al., 2010). From Table 3, it is obvious
that the IABC algorithm in problems g02, g03, g07, g08,
209, g11, g16 and g23 outperforms compare with other
algonthms. For g4, g10, g19, the performance of SF-ABC
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Table 3: The numerical results obtained by ARC, MABC, M-ABRC and iABC
Problems Results ABC MABRC M -ABRC SF-ARC iABC
g01 Best -1.500000e+01 1.500000e+01 1.500000e+00 1.500000e+01 1.500000e+01
Mean 1.500000e+01 1.500000e+01 1.500000e+01 -1.426341e+01 1.500000e+01
Worst 1.500000e+01 1.500000e+01 1.500000e+01 -1.274809¢e+01 1.500000e+01
SD 9.418509e-14 5.190673e-15 7.420126e-15 8.890347e-01 9.895836e-16
g02 Best -8.035669%-01 -8.035383e-01 -8.036169¢-01 -7.175021e-01 -8.03618%-01
Mean -8.017445e-01 -8.026779%e-01 -7.994087e-01 -5.990304e-01 -8.014211e-01
Worst -7.929237e-01 -8.003014e-01 -7.780131e-01 -4.323677e-01 -7.861565e-01
SD 3.002902e-03 1.049929¢-03 5.790153e-03 2.497013e-02 5.211638e-03
g03 Best -1.004657e+00 -1.004817e+00 -1.000803e+00 -1.000396e+00 -1.005003e+00
Mean -1.000096e+00 -1.001941e+00 -1.000438e+00 -1.000107e+00 -1.004983e+00
Worst -9.796509-01 -9.891600e-01 -1.000164e+00 -1.000042e+00 -1.004926e+00
SD 5.9791135e-03 3.751844e-03 4.704529¢e-05 5.683220e-05 1.755578e-05
204 Best -3.066554et+04 -3.066554e+04 -3.066554et+04 -3.066553e+04 -3.066554e+04
Mean -3.066554e+04 -3.066554e+04 -3.066553e+04 -3.066553e+04 -3.066554e+04
Worst -3.060554e+04 -3.066554e+04 -3.060552e+04 -3.066553e+04 -3.060554e+04
SD 3.981196e-11 7.744473e-11 4.901256e-11 2.067912e-11 1.519625e-11
g0s Best 5.126863e+03 5.127099e+03 5.126815e+03 5.126793e+03 5.126514e+03
Mean 5.18723%e+03 5.236991e+03 5.298769e+03 5.126604e+03 5.319742¢+03
Worst 5.437988e+03 5.802318e+03 5.509277et+03 5.126918e+03 5.723262e+03
SD 5.696131e+01 1.560343e+02 5.617809e+01 5.046901e-01 2.082831e+02
206 Best -6.961814e+03 -6.961814e+03 -6.961814e+03 -6.961814e+03 -6.961814e+03
Mean -6.961814e+03 -6.961814e+03 -6.961814e+03 -6.961814e+03 -6.961814e+03
Worst -6.961814e+03 -6.961814e+03 -6.961814e+03 -6.961814e+03 -6.961814e+03
SD 2.764179e-12 4.931216e-12 5.412767e-12 3.902387e-12 2.240565e-12
207 Best 2.446138e+01 2.447030e+01 2.431439¢e+01 2.431643e+01 2.431173e+01
Mean 2.470718e+01 2.468698e+01 2.445981et+01 2.465759e+01 2.446559+01
Worst 2.516577e+01 2.536005e+01 2.545217e+01 2.554426e+01 2.505395e+01
SD 1.813943e-01 1.785620e-01 3.425503e-01 3.149533e-01 1.720010e-01
208 Best -9.582504e-02 -9.582504e-02 -9.582521e-02 -9.582531e-02 -9.58204e-02
Mean -9.582504e-02 -9.582504e-02 -9.582537e-02 -9.582546e-02 -9.582504e-02
Worst -9.582504e-02 -9.582504e-02 -9.582562e-02 -9.582549¢-02 -9.582504e-02
SD 2.8230006e-17 2.823006e-17 5.013611e-17 1.992503e-17 1.945623e-17
209 Best 6.80638e+02 6.806371e+02 6.806323e+02 6.806311e+02 6.806307e+02
Mean 6.86506e+02 6.806515e+02 6.806378e+02 6.806429e+02 6.806406e+02
Worst 6.806506e+02 6.806760e+02 6.806892e+02 6.808601e+02 6.806593e+02
SD 8.074911e-03 9.561019e-03 2.349103e-02 5.115349e-02 7.625513e-03
glo Best 7.160631et03 7.205540e+03 7.051408e+03 7.049937e+03 7.050539¢+03
Mean 7.364940e+03 7.347843e+03 7.234266et+03 7.216495e+03 7.216535¢+03
Worst 7.691303e+03 7.924128e+03 7.470874e+03 7.370533e+03 7.522059¢+03
SD 1.298405e+02 1.341410e+02 2.356713et+02 4.802264e+02 1.109373e+02
gll Best 7.490001e-01 7.490000e-01 7.501841e-01 7.520393e-01 7.490000e-01
Mean 7.490021e-01 7.490031e-01 7.512236e-01 7.533215e-01 7.493012e-01
Worst 7.490104e-01 7.490142e-01 7.514019e-01 7.534092e-01 7.507898e-01
SD 2.030974e-06 3.620362e-06 3.490254e-05 2.641176e-05 5.063214e-04
gl2 Best -1.000000e+00 -1.000000e+00 -1.000000e+00 -1.000000e+00 -1.000000e+00
Mean -1.000000e+00 -1.000000e+00 -1.000000e+00 -1.000000e+00 -1.000000e+00
Worst -1.000000e+00 -1.000000e+00 -1.000000e+00 -1.000000e+00 -1.000000e+00
SD 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00
gl3 Best 5.551238e-01 4.895965e-01 2.213604e-01 2.285133e-01 4.495833e-01
Mean 9.497812e-01 9.5768%6e-01 2.674431e-01 2.639674e-01 7.352076e-01
Worst 1.492954e+00 1.437534e+00 5.301298e-01 6.190731e-01 9.118312e-01
SD 1.469151e-01 1.613582e-01 1.627542e-01 2.437194e-01 1.488054e-01
gl4 Best -4.511878e+01 -4.532082e+01 -4.757941et+01 -4.69083 5e+01 -4.700910e+01
Mean -4.268215e+01 -4.265421e+01 -4.720886e+01 -4.646839e+01 -4.504622e+01
Worst -4.0601 65e+01 -4.005962e+01 -4.684037e+01 -4.377068e+01 -4.375761e+01
SD 1.171236et+00 1.195831e+00 2.632415e-01 5.670931e-01 6.689353e-01
gls Best 9.412191e+02 9.514375e+02 9.608947e+02 9.622345e+02 9.576714e+02
Mean 9.588476e+02 9.608922e+02 9.617855e+02 9.632661et+02 9.694047e+02
Worst 9.729578e+02 9.706846e+02 9.624628e+02 9.748746e+02 9.776851e+02
SD 7.512742e+00 4.878%944e+00 1.511032e-02 1.273942e-02 6.183477e+00
glé Best -1.905155e+00 -1.905155e+00 -1.905155e+00 -1.905155e+00 -1.905155e+00
Mean -1.905155e+00 -1.905155e+00 -1.905155e+00 -1.905155e+00 -1.905155e+00
Worst -1.905155e+00 -1.905155e+00 -1.905155e+00 -1.905155e+00 -1.905155e+00
SD 1.068872e-15 6.307382¢-16 2.791278e-16 3.091653e-14 7.31806%9%-16
gl7 Best 8.886685e+03 8.879576e+03 8.866618e+03 8.895849¢+03 8.867942e+03
Mean 9.053597e+03 9.053567e+03 8.987459e+03 8.957531e+03 8.946634e+03
Worst 9.249174e+03 9.215365e+03 9.1652190e+03 8.966835e+03 9.158921e+03
SD 1.230898e+02 1.226397e+02 9.432612e+01 2.331451e+00 6.220550e+01
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Table 3: Continous

Problems Results ABC MABC M -ABC SE-ABC 1ABC
gl8 Best -8.40568e-01 -8.593651e-01 -8.660074e-01 -8.660258e-01 -8.660020e-01
Mean -6.895726e-01 -7.107018e-01 -7.943215e-01 -7.377351e-01 -7.370434e-01
Worst -6.616021e-01 -6.613345e-01 -6.643098e-01 -5.171642e-01 -6.715862e-01
SD 5.082004e-02 6.776620e-02 8.572117e-02 2.249256e-01 9.189952e-02
gl9 Best 3.677401et+01 3.758086e+01 3.364751e+01 3.260260e+01 3.325600e+01
Mean 3.929784e+01 3.983492e+01 3.432583e+01 3.310718e+01 3.442409e+01
Worst 4.270161et01 4.242735e+01 3.637352e+01 3.491403e+01 3.604190e+01
SD 1.457124e+00 1.174349e+00 5.802467e-01 4.842309e-01 6.929925e-01
g23 Best - - - -3.022547et+02 -4.836472e+02
Mean - - -1.397621et+02 -8.491502e+01
Worst - - 2.468019e+02 1.627247e+02
SD - - - 1.562291e+02 1.339717e+02
g24 Best -5.508013e+00 -5.508013e+00 -5.508013e+00 -5.508013e+00 -5.508013e+00
Mean -5.508013e+00 -5.508013e+00 -5.5080130e+00 -5.508013e+00 -5.508013e+00
Worst -5.508013e+00 -5.508013e+00 -5.508013e+00 -5.508013e+00 -5.508013e+00
SD 1.806812e-15 3.735590e-15 4.256902e-15 2.394062e-15 1.806724e-15
was superior to all other algorithms. However, M-ABC 1s REFERENCES

superior in problems g13, g4, g5 and gl 6. The numerical
performance shows that 1ABC provided comparable result
with respect to other state of the art constrained ABC
algorithms in solving COPs.

CONCLUSION

In this study, an improved Artificial Bee Colony
algorithm (1ABC) was proposed for the constrained
non-linear optimization problems. The proposed i1ABC
algorithm benefits from the advantages of possessing
several new features. A novel chaotic techmique has been
devised and hybridized with opposition based learning
method to diversify the imitial population which in turn
affects the global convergence of the algorithm.
Moreover, two new search equations have been
mtroduced into employed and onlooker bee phases to
umnprove the balance of the exploration and exploitation of
the algorithm. A probability selection mechanism along
with a new fitness formulation has been designed to take
mnto account the informative infeasible solutions as well
as the feasible solutions. In addition, the smart flight
operator is employed on the scout bee phase of this
algorithm. The 1ABC has been comprehensively tested on
the test problems of the CEC2006 benchmark suites. Tt has
been compared with several state of the art algorithms,
where the simulations revealed that iABC has a
competitive performance and m some cases superior to

the algorithms considered in this study.
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