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Abstract: Artificial Bee Colony (ABC) algorithm is a relatively new Swarm Intelligence algorithm that has
attracted great deal of attention from researchers in recent vears with the advantage of less control parameters
and strong global optimization ability. However, there 1s still an msufficiency in ABC regarding its solution
search equation which is good at exploration but poor at exploitation. This drawback can be even more
significant when constraints are also involved. To address this 1ssue, an Enhanced ABC algorithm (EABC) 1s
proposed for constrained optimization problems where two new solution search equations are mtroduced
for employed bee and onlooker bee phases, respectively. In addition, both Chaotic Search Method and
opposition-based learning mechanism are employed to be used in population initialization in order to enhance
the global convergence when producing initial population. This algorithm is tested on several benchmark
functions where the numerical results demonstrate that the EABC 1s competitive with state of the art
constramned ABC algorithm.
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INTRODUCTION

Global optimization deals with optimization problems
that might have more than one local minimum. Therefore,
finding global mimmum out of a set of local mimma
solutions in a certain feasible region can be challenging.
While these problems can even be more challenging
when constraints are also involved. In general, algorithms
for solving constrained optimization problems can be
classified nto two main categories: derivative-based
methods and derivative-free methods. There have always
been many real world problems with non-differentiable
constramnts and disjont feasible domains. These
difficulties can make 1t very challenging for
derivative-based methods to find even a feasible solution,
let alone an optimal solution.

Furthermore, if derivative-based methods can
obtain solutions they are usually only locally optimal.
Dernvative-free methods in contrast utilize a population
of individuals in a search domain. Moreover, they only
use the evaluations of the objective function to direct the
search. Therefore, they do not usually pose limitations
related to derivative-based methods and they do not
easily fall into local optima.

Population based algorithms as significant branch of
derivative-free methods capture much attention in recent
years i solving constrained optimization problems. The
most prominent population based algorithms suggested

in the literatures are Genetic Algorithm (GA) (Holland,
1975), Particle Swarm Optimization (PSO) (Kennedy, 2011),
Ant Colony Optimization (ACO) (Dorigo and Blum, 2005),
Differential Evaluation (DE) (Stanarevic et al., 2011) and
Artificial Bee Colony Algorithm (ABC) (Karaboga, 2003)
and so on. ABC is a relatively new population-based
algorithm developed by Karaboga (2005) based on
simulating the foraging behaviow of honey bee swarm.
Numerical performance demonstrated that ABC algorithm
iscompetitive to that of other population-based algorithms
with an advantage of employing fewer control parameters
and the need for fewer function evaluations to arrive
at an optimal solution (Karaboga and Basturk, 2007,
Karaboga and Akay, 2009, 2011). Due to its simplicity and
ease of implementation, ABC has captured much attention
and has been employed to solve many numerical as well
as practical optimization problems since its inception
(Gao et al, 2014; Aydin et al, 2014; 1i et al, 2012;
Hiang and An, 2013).

Among optimization problems, the ones tackled in
this study are Constrained Optimization Problems (COPs)
for Non-Linear Programming (NLP) which can be
formulated as m the following problem:

min f{x)
st g (0<0,j=12%.,m (1)
hj(x): 0,j=m+1,..,1
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where, x = [X,, X5,..., X, JER" i8 an n-dimensional decision
vector and each x, is bounded by lower and upper bounds
a8 [Xpw Xmal- The objective function f(x) is defined on S
and 1s an n-dimensional search space in R".

In general, most of the optimization algorithms
have been mmtially introduced to address unconstrained
optimization problems. Therefore, constraint handling
techniques are employed to direct the search towards the
feasible regions of the search space. Constraint handling
methods were categorized into four groups by Koziel and
Michalewicz (1999):

Methods based on penalty functions which penalize
constramts n order to solve a constramed problem
as an unconstrained one

Methods based on reservation of feasible solutions
by transforming infeasible solutions to feasible ones
with some operators

Methods that separate feasible and infeasible
solutions

Other hybrid methods

In this study an enhanced constraned ABC
algorithm 1s proposed by employing two new search
equations for employed bee and onlooker bee
phases. Moreover, chaotic search mechanism and
opposition-based learning method are applied to initialize
population with the amn of preventing algorithm from
getting stuck at local mimma.

ARTIFICTAL BEE COLONY

ABC  algorithm is  a recently proposed
population-based algorthm mtroduced by Karaboga
(2005) for real parameter optimization. This algorithm
emulates the foraging behaviour of honey bee colonies.
This algorithm classifies the artificial bees into three
groups, employed bees, onlooker bees and scout bees.
Half of the colony includes employed bee and the other
half of the colony consist of onlooker bees. In ABC, the
position of food source denotes a possible solution
to the optimization problem and the nectar amowunt of
food source represents fitness value of the associated
solution. The number of employed bees or the onlooker
bees is equal to the number of Solutions (SN) in the
population. At mitialization step, ABC generates a
randomly distributed initial population of SN solutions
using following equation:

X | = Xy Hrand(0, Dix, X, ) (2)
where each solution x;, 1 =1, 2, ..., SN is d-dimensional.
vector forj=1, 2, .., d Inaddition, x,;, ; and x, ; are the

lower and upper bounds for the dimension j, respectively.
These food sources are randomly assigned to SN mumnber
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of employed bees and their fitness are evaluated. After
imtialization, the population of the solutions 1s subjected
to repeat the search processes for employed bee, the
onlooker bees and the scout bee phases. The process
continues until algorithm reaches the Maximum Cycle
Number (MCN). In employed bee phase each employed
bees produces a modification on the solution X, using
Eq 3
v =X 0 0% X ) (3)

where, ke{l, 2, .., SN} and je{1, 2, ..., d} are randomly
chosen indexes and k has to be different from i. ¢, ;is a
random number in the range [-1, 1]. After V, is obtained its
fitness values 15 evaluated and a greedy selection
mechanism 1s applied comparing X, and V,. If the fitness
value of the new solution V, is less than the current
solution X, then, the solution V; is replaced with the 3,
otherwise the current solution remains. After the
employed bee phase, the solution information is
transferred to the onlooker bee phase.

In onlookers bee phase a solution 1s chosen depend
on the probability value p, associated with that solution
calculated using the following equation:

4

where, f 1s the fitness value of solution 1. Once the
onlooker has selected solution X, a modification is done
on the solution using Eq. 3. Then, fitness values of
generated solutions are evaluated and similar to employed
bees phase, greedy selection mechanism is employed. If
new solution has better fitness value than current
solution, the new solution remains in population and the
old solution is removed.

In the scout bee phase, if solution X cannot be
improved further through a predetermined number of
cycles (limit), then that solution is abandoned and
replaced with a new solution generated randomly in using
Eq. 2. According to the abovementioned description, ABC
main procedure can be summarized in Algorithm 1.

Algorithm 1 (original artificial bee colony algorithm):
Tnitialize the population of solution
Evaluate the initial population
cycle=1
Repeat
Employed bee phase
Apply greedy selection process
Calculate the probability values for
i=1,2,..,8N
Onlooker bee phase
Scout bee phase
Memorize the best solution achieved so far
cycle = cycletl
until cycle =maxirmun cycle number
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CONSTRAINED ARTIFICTIAL BEE COLONY

ABC algorithm has been originally proposed to
deal with unconstrained optimization problems
(Karaboga, 2005). This algorithm is then adapted to
tackle constrained optimization problems. The presence of
various constraints and interferences between constraints
makes COPs more difficult to tackle than unconstrained
optimization problems. In this study, we present the
available constrained ABC algorithms in the literature.

ABC algorithm for the first time was adapted by
Karaboga and Bastuk (2007) to solve constrained
optimization problems. In this algorithm to cope with
constramnts, Deb’s mechanism (Deb, 2000) 15 employed to
be used instead of the greedy selection process due
to its simplicity, computational cost and fine tuning
requirement over other constraint handling methods.
Because initialization with feasible solutions is very time
consuming and in some situation impossible to generate
a feasible solution randomly, the constrained ABC
algorithm does not consider the initial population to be
feasible. As an alternative Deb’s rules are employed to
direct the solutions to feasible region of search space. In
addition, scout bee phase of the algorithm provides a
diversity mechanism that allows new and probably
infeasible individuals to be in the population. Tn this
algorithm, artificial scouts are produced at a Scout
Predetermined Period (SPP) of cycles for generating
new solution randomly. The numerical performance of
proposed ABC algorithm is evaluated and compared with
the constrained PSO and DE algorithms and results show
that ABC algorithm can be effectively applied for solving
constrained optimization problems.

Mezura-Montes, Dami’an-Araoz and Cetma-
Dom’ingez (Mezura-Montes er al., 2010) presented
Smart Flight ABC (SF-ABC) algorithm to improve the
performance of constrained ABC. In this algorithm to
direct search towards the best-so-far solution, smart flight
operator is applied in scout bee phase instead of uniform
random search in ABC (Karaboga and Basturk, 2007).
Based on this method, if the best solution 15 infeasible,
the trial solution has the chance to be located near the
boundaries of the feasible region of search space.
However, if the best solution is infeasible, the smart flight
will generate a solution in promising region of search
space. In addition to aforementioned improvement on
ABRC, the combination of two dynamic tolerances are also
applied in SF-ABC as constrained handling mechanism
to transform the original CNOP into unconstrained
optimization. The numerical results demonstrate the
competitive performance of SF-ABC with original ABC.

Another modification on ABC algorithm was
introduced by Karaboga and Akay (2011). What
makes this algorithm different from the original ABC
(Karaboga and Bastwrk, 2007) is related with the
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probability selection mechanism and parameter setting
process. In this algorithm, a new probability selection
mechanism is presented to enhance diversity by allowing
infeasible solutions in the population where infeasible
solutions are introduced inversely proportional to their
constraint violations and feasible solution defined based
on their fitness values. Tn addition, in this algorithm
appropriate value for each parameter is obtained. To
recognize this algorithm through this study, the
abbreviation MABC is used to refer to this algorithm.

Modified constrained ABC by applying multiple
onlooker bees (MO-ABC) was developed by Subotic
(2011) to improve constrained ABC (Karaboga and
Basturk, 2007). The numerical performance demonstrates
comparative results with original ABC.

A modified ABC (M-ABC) introduced four
modifications related with the selection mechanism,
the equality and boundary constraints and scout bee
operators to improve the behaviour of ABC in
constrained search space. The numerical results show
that M-ABC provides comparable results with respect
to algorithms under comparison (Mezura-Montes and
Cetina-Dominguez, 2012).

A genetically inspired ABC algorithm (GI-ABC) was
presented for COP. In this algorithm uniform crossover
and mutation operators from GA are applied to scout bee
phase to improve the performance of ABC algorithm
(Bacanin and Tuba, 2012).

Stanarevic et al. (2011) introduced a modified ABC
algorithm in a form of smart bee (SB-ABC) to solve
constrained problems which applies its historical
memories for the solution. The numerical experiments
show efficiency of the method.

ABC-BA is a hybrid algorithm presented by Tsai
(2014) and Stanarevic et al. (2011) that integrates ABC
and Bee Algonthm (BA). In this algonthm, individuals
can perform as an ABC individual in ABC sub-swarm or
a BA individual in the BA sub-swarm. In addition, the
population size of the ABC and BA sub-swarms
change stochastically based on current best fitness
values achieved by the sub-swarms. Experimental results
demonstrate that ABC-BA outperforms ABC and BA
algorithm.

Constrained ABC algorithm was also applied to
solve many real-world engineering problems in recent
years. Brajevic et al. (2011) proposed a Constrained
Artificial Bee Colony (SC-ABC). This method is tested on
several engineering benchmarlk problems which contain
discrete and continuous variables. The numerical results
were then compared with results obtained from Simple
Constrained Particle Swarm Optimization Algorithm
(SiC-PSO) which show very good performance. Akay and
Karaboga (2012) used ABC to solve large scale
optimization problems as well as engineering design
problems. The mnumerical results show that the
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performance of ABC algorithm is comparable to those of
state of the art algorithms under consideration. Upgraded
Artificial Bee Colony (JABC) algorithm for constrained
optimization problems was presented by Brajevic and
Tuba (2013) to improve modification rate parameter and
applying modified scout bee phase of the ABC algorithm.
This algorithm was tested on several engineering
benchmark problems and the performance was compared
with the performance of the Akay and Karaboga algorithm
(Akay and Karaboga, 2012). The numerical results show
that the proposed algorithm produces better results.

ENHANCED ARTIFICTAL BEE COLONY
ALGORITHM

According to the literature in most of the constrained
ABC algorithms, the role of population initialization is
ignored. However, in order to have powerful algorithm
initial solutions must be generated uniformly within
the search space. The uniformly distributed initial
solutions help to generate at least some points in the
neighbourhood of global solution. However, by applying
chaotic method finally global solution can be founded.
In this study, we employed both chaotic mechanism
and opposition-based learning method into population
initialization to enhance diversity. Among available
chaotic method, logistic is selected to be used in
initialization step which can be equation as:

)

¢y = 0(l-g,)

where ¢, is the kth chaotic mumber, ¢£(0, 1) under the
conditions that the initial ¢,c(0, 1) and ¢, cannot get
numbers from set {0.0, 0.25,0.75, 0.5, 1.0}. The parameter
15 set as 4. The mitialization process based on chaotic
search mechamism and opposition learning method 1s
coded in Algorithm 2.

Algorithm 2 (initialization approach):
Consider the maximum number of chaotic iteration
K =300, the population
size SN and the counteri=1,j=1
for i=1to SN/2
forj=1tod

Randomly initialize variables ¢, ;c(0, 1) and set

iteration counter k=0

fork=1to K
Cra, = 05(1'%)
end

g Xmm-jJerax,j'Xmin,J
end

end
Set the individual counteri=1and j=1
for i=SN/2 to SN

forj=1tod
OPy = Xain, i, i Xruin
end
end

Select SN individuals from the set P(SN) uO P(SN) as
initial population
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After initialization the main loop consists of
employed bees, onlooker bees and scout bees 1s
subjected to repeated until the stopping criterion is met.
In this algorithm the new search equation is proposed for
employed bee phase using Eq. 6 to improve the
exploitation behaviour of ABC:

Xu+yu(xu-xm)+pu(xrlj-xrz]) ifRJ<MR ®)

Vu

X otherwise

4

Where:

r,1; = Two different random integer indices selected
from {1, 2, ..., SN}

= A random number between [-1, 1]

= Random number between [0, 1]

= Uniformly distributed random number and MR is
control parameter in range [0, 1]

Yii
'J'l]
R

In addition, x,,, is the best solution found so far. In
Eq. 6, the second and third terms enhance exploration
capability.

Algorithm 3 (employed bee phase of EABC algorithm):
fori=1:8N

forj=1:d

Produce the new solution WV, for employed bee using Eq. 6

end for
Tf no parameter is changed, change one random parameter of the solution
using
Evaluate the quality of V;
Apply Deb’s mechanism to select between V; and X;
Tt solution ¥; does not improved trail; = trail+1,
otherwise trail; = 0
End if

After producing a new solution, EABC algorithm
makes a selection using Deb’s mechanism (Karaboga and
Akay, 2009) instead of using greedy selection in
unconstrained ABC. Applying Deb ’s rules,the bee either
memorizes the new solution by forgetting the current
solution or keeps the current solution

Deb’s method uses a tournament selection
mechanism where two solutions are compared at a time by
applying following rules:

Any feasible solution is preferred to any infeasible
solution

Among two feasible solutions, the one having better
objective function value is preferred

Among two infeasible solutions, the one having
smaller constraint violation is preferred

After completion of the search by all employed bees
they share the mformation of the solutions with the
onlooker bees. In this probability selection mechanism
(Liang et al., 2006) infeasible solutions are also allowed to



Res. J. Applied Sci., 10 (6): 241-250, 2015

participate in the colony. The probability values of
feasible solutions are between 0.5 and 1 and for mfeasible
solution between 0 and 0.5. The probability method is
defined as Eq. 7:

0.5+ Sflmi =0.5 ifsolution is feasible
ZFitnessJ
b= a %
Violati . . .
-SNIO& %0.5 if solutionisin feagible
Z\Iiolationj
=

Based on the probability selection mechanism,
solutions are selected proportional to their fitness values
if solutions are feasible and inversely proportional to their
constraint violation values if solutions are infeasible. This
process 1s simulated by the procedure given in
Algorithm 4.

After receiving fitness values mformation from
employed bees, onlooker bee selects a solution based on
their probability values. Then, onlooker bees produce
modification on the position of the selected solution
using Eq. 8:

Xy Ty (Xhestj -szj) + @ij (Xbestj %) if R;=MR

3]

(8)

otherwise

Algorithm 4 (calculate probability for EABC algorithm):
fori=1:8N

Calculate the probability vahies using Eq. 7

where violation, is the constraint violation of solution

X; and fitness; is the fitness value of the solution X;. The

fitness is defined by Eq. 9:

L) iff 20
L+abs(f)) iff<0

@

Fitness; =

where f] is the cost value of the solution X
end for

where 1, 1, and r; are three different random nteger
indices selected from {1, 2, ..., SN}. @;; and ®@; is uniformly
distributed random real number 1n the range [-1, 1].

As in the case of employed bees the Deb’s rules are
employed to compare current solution with new solution.
If the new solution produces better result it remains
in population and the old
Algorithm 5.

solution 15 removed
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Algorithm 5 (onlooker bee phase for EABC algorithm):
t=0,i=1

repeat

if random <p; then

t=t+l

forj=1:d

Produce a new solution V, for the onlooker bee of the sohition X
using Eq. 8

end for

Apply the selection process between V; and X; based on

Deb’s Method

Tt solution ¥; does not improve trail; = trail+1,

otherwise trail; = 0

end if’

i=i+l

i=1imod (SN+1)

until t = SN

In Eq. 8, the first term improves the exploration ability
and the second and third terms enhance exploitation
capability.

After distribution of all onlooker bees, if a solution
can not improve further through predetermined number
of cycles (limit) is abandoned and replaced with a new
solution discovered by scout bees. In EABC algorithm, a
smart flight scout bee is proposed to enhance the
exploitation ability of algorithm. Scout bee phase is
defined as Eq. 10:

Vi T X +kij (ij 'Xij)'(l'kij) (Xbestj 'Xij) (10)
Where:
k, = Uniformly real number m[-1, 1]
Xuey = Lhe best solution found so far

NUMERICALEXPERIMENTS AND COMPARISONS

To evaluate and compare the performance of the
proposed algorithms, 24 constrained benchmark functions
form CEC 2006 (Stanarevic et al, 2011) are applied.
MCABC and other constrained ABC algorithms under
comparisons are coded m MALAB enviromment. The
value of each parameters used are given in Table 1.

The numerical performance of proposed EABC
algorithm was compared agamst constramed ABC
(Karaboga and Basturk, 2007), MABC (Liang ef al., 2006),
M-ABC (Mezura-Montes et al., 2010), SF-ABC (Karaboga
and Akay, 2011) and MO-ABC (Lief al, 201 2) algorithms.
Each algorithm are tested for 24 test function and after 30
independent runs of each algorithm the average solution
15 considered which can be seen m Table 2 and 3. The

Table 1: Parameters setting

Parameters Symbols Values
Solutions number SN 20
Maximum cy cle number MCN 6000
Modification rate MR 0.8
Population size PS 40
Limit Limit 150
Scout production period SPP 150
Epsilon 3 0.001




Table 2: Function values obtained by ABC, MABRC, M-ABC, SF-ABC, MO-ABC and EARC
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Problems ABC MABC M -ABC SF-ABC MO-ABC EABC
g1

Best -15.00000 -1500000 -15.00000 -15.00000 -15.00000 -15.00000
Mean -15.00000 -15.00000 -15.00000 -14.16321 -15.00000 -15.00000
Worst -15.00000 -15.00000 -15.00000 -12.52510 -15.00000 -15.00000
SD 0.000000 0.000000 0.000000 0.923125 0.000000 0.000000
g2

Best 0.803567 0.803538 0.803614 -0.708944 -0.803610 -0.803618
Mean -0.791744 -0.792927 -0.799450 -0.471249 -0.793510 -0.802736
Worst -0.752924 -0.750302 -0.778176 -0.319535 -0.744582 -0.794656
SD 0.013292 0.011052 -0.006440 0.010832 0.016124 0.002685
03

Best -1.004657 -1.004817 -1.000000 -1.000000 -1.000000 -1.005002
Mean -1.000096 -1.001941 -1.000000 -1.000000 -1.000000 -1.004961
Worst -0.979651 -0.989160 -1.000000 -1.000000 -1.000000 -1.004910
SD 0.005979 0.000375 0.0000 0.0000 0.0000 0.000026
g4

Best -30665.542 -30665.42 -30665.539 -30665.539 -30665.539 -30665.54
Mean -30665.542 -30665.42 -30665.539 -30665.539 -30665.539 -30665.54
Worst -30665.542 -30665.42 -30665.539 -30665.539 -30665.539 -30665.54
SD 0.0000000 0.0000000 0.00000 0.00000 0.00000 0.000000
g3

Best 5126.489 5127.099 5126.734 5126.506 5126.657 5126.530
Mean 5177.239 5236.991 5178.178 5126.527 5162.506 5249.399
Worst 5307.988 5802.318 5317.183 5126.859 5229.119 5824.530
SD 57.86021 156.0343 56.000 0.0793 47.8203 202.4742
g6

Best -6961.814 -6961.814 -6961.814 -6961.814 -6961.814 -6961.814
Mean -6961.814 -6961.814 -6961.814 -6961.813 -6961.813 -6961.814
Worst -6961.814 -6961.814 -6961.814 -6961.805 -6961.804 -6961.814
SD 0.0000000 0.0000000 0.000000 0.0002 0.0001 0.000000
g7

Best 24.46138 24.47032 24.312235 24.16453 24.32325 24.31434
Mean 24.70718 24.68698 24.416402 24.65821 24.45653 24.38832
Worst 25.16577 25.36005 24.794032 25.55140 24.92938 24. 70644
SD 0.181394 0.178641 0.12723 0.326021 0.135023 0.08267
g8

Best -0.095825 -0.095825 -0.095825 -0.095825 -0.095825 -0.09582504
Mean -0.095825 -0.095825 -0.095825 -0.095825 -0.095825 -0.09582504
Worst -0.095825 -0.095825 -0.095825 -0.095825 -0.095825 -0.09582504
SD 0.000000 0.000000 0.000000 0.000000 0.000000 0.00000000
09

Best 680.6381 680.6371 680.6331 680.6325 680.6312 680.6324
Mean 680.6506 680.6515 680.6474 680.6450 680.6350 680.6493
Worst 680.6757 680.6760 680.6768 680.8584 680.6363 680.7374
SD 0.0080749 0.009610 0.054310 0.041251 0.004215 0.021527
gl

Best 7160.63125 7220.5540 7051.7752 7049.5166 7053.3204 7117.8841
Mean 7364.94034 7347.8433 7233.8101 7116.8236 7167.8015 T447.8902
Worst 7691.30330 7924.1286 7604.1290 7362.7406 7418.3340 8034.5085
SD 129.8405 134.14103 101.325 82.12450 83.00825 236.67923
gll

Best 0.7490003 0.7490001 0.7500000 0.7500000 0.7500000 0.7490000
Mean 0.7490022 0.7490032 0.7500000 0.7500000 0.7500000 0.7499839
Worst 0.7490101 0.7490140 0.7500000 0.7500000 0.7500000 0.7529146
SD 0.0000020 0.000003 0.000000 0.000000 0.000000 0.00110317
gl12

Best -1.000000 -1.000000 -1.000000 -1.000000 -1.000000 -1.000000
Mean -1.000000 -1.000000 -1.000000 -1.000000 -1.000000 -1.000000
Worst -1.000000 -1.000000 -1.000000 -1.000000 -1.000000 -1.000000
SD 0.0000000 0.000000 0.000000 0.000000 0.000000 0.0000000
gl13

Best 0.5551238 0.4895965 0.0538901 0.0539860 0.4542041 0.184749
Mean 0.9497812 0.9576896 0.1577912 0.2638542 0.4560438 0.7331314
Worst 1.4920540 1.4375342 0.4419785 1.000000 0.4891204 1.000000
SD 0.14691 51 0.1613582 0.0172430 0.2162045 0.0215840 0.232139
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Table 3: Function values obtained by ABC, MARC, M-ABC, SF-ABC, MO-ABC and EARC

Problems ABC MABC M-ABC SF-ABC MO-ABC EABC
gl4

Best -45.11878 -45.32082 -47.64541 -46.66514 -46.450835 -46.06784
Mean -42.68215 -42.65421 -47.27156 -46.46824 -45.998013 -43.94703
Worst -40.60165 -40.05962 -46.53698 -43.87123 -45.316798 -41.59535
SD 1.171236 1.195831 0.245762 0.520124 0.257 0.9756053
gls

Best 941.21911 051.43752 961.71521 961.71511 961.71512 954.23572
Mean 058.84762 960.89221 961.71879 961.71553 961.88313 966.58910
Worst 972.95780 970.68460 961.79125 961.72013 964.33983 978.00521
SD 7.512742 4.878944 0.014319 000.159 0.54267 7.6150701
gl6

Best -1.905155 -1.905155 -1.905155 -1.905155 -1.905155 -1.905155
Mean -1.905155 -1.905155 -1.905155 -1.905155 -1.905155 -1.905155
Worst -1.905155 -1.905155 -1.905155 -1.905155 -1.905155 -1.9050155
SD 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000
gl7

Best 8886.685 8879.576 8866. 5986 8927.598 8939.125 8860.575
Mean 9053.597 9053.567 8987.4589 8928.865 8946.172 8982.984
Worst 9249.174 9215.365 0165.2543 8938.617 8956.235 9249.278
SD 123.0898 122.6397 95.6532 3.12132 9.528253 109.1522
¢l8

Best -0.8405680 -0.8593651 -0.866023 -0.866025 -0.865976 -0.8660230
Mean -0.6895726 -0.7107018 -0.795019 -0.740748 -0.767198 -0.8265902
Worst -0.6616021 -0.6613345 -0.672223 -0.501205 -0.670714 -0.6713253
SD 0.05082904 0.06776626 0.093789 0.1453562 0.0960035 0.07813747
gl19

Best 36.774012 37.5808064 33.254703 32.662712 33.7698315 32.9962814
Mean 39.297845 39.834920 34.265623 33.107137 35.3147859 33.6537523
Worst 42701610 42.427351 35.736841 34.914012 37.3645831 35.5405501
SD 1.4571242 1.1743492 0.631240 0.51325 0.687514 0.527484
223

Best - - 159.7542 -350.12614 - -1071.639
Mean - - -35.28473 -121.37464 - -327.1551
Worst - - 109.1275 276.00379 - 149.2050
SD - - 82.7698 157.895 - 325.5405
224

Best -5.508013 -5.508013 -5.508013 -5.508013 -5.508013 -5.508013
Mean -5.508013 -5.508013 -5.508013 -5.508013 -5.508013 -5.508013
Worst -5.508013 -5.508013 -5.508013 -5.508013 -5.508013 -5.508013
SD 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000

01

The value of functions
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Fig. 1: Tterations to convergence for problem g0O2
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Fig. 2: Tterations to convergence for problem g3
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Fig. 3: Tterations to convergence for problem g11

problems g20, 21, g22 are not considered because no
feasible solutions can be found for these problems by
algorithms. The simulation results demonstrate that all
algorithms under comparison obtained the same results
for problems g06, g12, g16 and g24. The EABC 18 superior
to other algorithms mn problems g02, g03, g04, g08, g11,
gl7, gl and g23. The SF-ABC algorithm in problems g05,
gl0, g13, g15, g1% has good performance compare with
other algorithms. However, MO-ABC 1s outperformed in
problems g09, g14.

248

The numerical performance showed that EABC
provided comparable result with respect to other
state of the art algorithms in comparison to solve
COPs.

In order to compare the convergence ability of
EABC with the other state of the art algorithms (Fig. 1-4)
are presented which clearly show that EABC is able to
converge faster than other algorithms. It confirms that the
new search equations can accelerate the constrained ABC
COIV eIgence.
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Fig. 4: Tterations to convergence for problem g23
DISCUSSION

In this study, we have mtroduced a modified
constrained ABC called EABC algorithm to solve
constrained optimization problems in which the imitial
population is generated using Chaotic Search Method
along with opposition-based learning method. In addition,
two new search equations are proposed for employed
bee and onlooker bee phases to enhance the global
convergence of ABC algorithm. Smart flight method is
also applied mto scout bee phases to improve the
exploitation behaviour of algorithm. The experimental
results were tested on 24 benchmark functions and show
that ECABC is competitive with state of the art
constrained ABC under comparison
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