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Abstract: Genetic algorithms are optimization and search methods based on the principles of Darwinian
evolution and genetics that try to provide the optimal solution of a problem. They evolve a population of
candidate selutions to the problem, using mutation, crossover and selection operators. Based on the diversity
and the efficiency of four well known crossover operators, this study presents a novel operator called
Combined Crossover Operator (CCO). The comparison with those four crossover operators shows that the

results obtamed by the CCO are promising.

Key words: Evolutionary computation, crossover, genetic algorithms, real coding crossover, CCO

INTRODUCTION

Genetic Algorithms (GAs) represent search and
optimization techmque based on principles of Mendel and
Darwin. In his book, “Adaptation in Natural and Artificial
Systems” (Holland, 1975), Holland described how to
apply the principles of natural evolution to optimization
problems and built the first GAs. Sine, the emergence of
Goldberg (1989) bool’s “Genetic Algorithms in Search,
Optimization and Machine Learning”, the GAs became
increasingly a powerful tool for solving search and
optimization problems. In Gas, a population of candidate
solutions called chromosomes randomly chosen is
evolved through generations according to mechanisms
of selection, crossover and mutation. The two most
commonly employed genetic search operators are
crossover and mutation. Crossover produces off spring
by recombining the mformation from two parents
(Deep and Thakur, 2007). Mutation prevents convergence
of the population by flipping a small number of randomly
selected bits to continuously introduce variation. The
driving force behind GAs is the unmique cooperation
between selection, crossover and mutation operator. A
genetic operator 1s a process used i GAs to maintain
genetic diversity (Poli and Langdon, 2006). The most
widely used genetic operators are crossover and
mutation.

The Combined Crossover Operator (CCO) 1s a
uniform crossover operator which has a different
maximum range of variation depending on the quality of
the solution. The main idea of the operator is to use good

parents (efficient ones) to improve the quality of the
offspring (exploitation) and to use not so good parents
(non-efficient ones) to explore the whole space
{exploration).

Literature review: The crossover operator s a genetic
operator that combines two chromosomes (parents) to
produce a new chromosome (Child) (Lobo et af., 2007).
The idea behind crossover is that the new chromosome
may be better than both of the parents if it takes the best
characteristics from each of the parents. Crossover occurs
during evolution according to a user-definable crossover
probability (Reeves and Rowe, 2002). For purposes of this
work, only crossover operators that operate on two
parents and have no self adaptation properties will be
considered.

Heuristic crossover: In Heunistic Crossover (HC)
(Ortiz-Boyer et al., 2005), heuristic returns an offspring
that lies on the line containing the two parents, a small
distance away from the parent with the best fitness value
in the direction away from the parent with the worse
fitness value. The default value of ratio is 1.2. If Parent’
and Parent’ are the parents and Parent' has the best
fitness value, the function returns the child (Herrera and
Lozano, 1996):

Child] = Parent’ JrRatiOX(Parentl1 -Parentiz) (1)

Child = Parent] +Ra‘[io><(Paren‘g1 -Parentiz) (2)
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Arithmetic crossover: In Arithmetic Crossover (AC)
(Herrera et al., 2003), arithmetic creates children that are
the weighted arithmetic mean of two parents. Children are
feasible with respect to linear constraints and bounds.
Alpha is a random value between [0, 1]. If Parent' and
Parent’ are the parents and Parent' has the best fitness
value, the function returns the child (Hong et af., 2002;
Zbignmew, 1996), according the equation:

(3)

Child!

o< Parent] +(1-c.)<Parent;

(4)

Child] = cuxParent] +{1-0t)Parent,

Simulated binary crossover: This crossover operator
works with two parent solutions and creates the offspring.
SBX (Deb and Agrawal, 1995) sinulates the working
principle of the single-point crossover operator on binary
strings. During this operation common interval schemata
between the parents are preserved in the offspring. The
procedure of computing the offspring Child' and Child?
from the parents Parent' and Parent? is described as
follows.

A spread factor [, is obtained as the ratio of the
absolute difference in the offspring values to their
parents:

Child} -Child;

Parent’ -Parent

(3)

With the above definition of the spread factor,
crossover operators are classified as:

* Contracting crossovers P<1: the parent points
enclose the children points

¢ Expanding crossovers P>1: the children points
enclose the parent points

*  Stationary crossovers P, = 1. the children points are
the same as the parent points

First a random number nef0, 1] 1s created. From a
specified probability distribution function, the ordinate 3,
1s found so that the area under the probability curve from
0 to 3, 15 equal to the chosen random number p. The
probability distribution used to create a child’s solution
is derived to have a similar search power as that in a
single-point crossover in binary coded GAs and is given
as follows (Deb and Kumar, 1995):

0.5(m+1p"
PR = 1
0.5M+1DP™?  otherwise

ifp <1
1 6)
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In the above expressions, the distribution index n
gives a higher probability for creating near parent
solutions as a small value of 1 allows distant solutions to
be selected as children solutions. Using Eq. 6, B, 1s
calculated by equating the area under the probability
curve to p as follows:

1

(2p)

Bo=r L
{—} otherwise
2(1-w)

After cobtammg P, from the above probability
distribution, the children solutions are calculated as
follows:

ifu<o.s
(7)

Child! = 0.5[(1+p,)<Parent,+(1- f, )<Parent!  (8)

Child} = 0.5[(1+ )xParent; + (1-f )=Parent;  (9)

Linear BGA crossover: The objective is to generate
offspring better than its parents, linear BGA crossover
approach 13 to create offspring closer the best parent
(Muhlenbein and Schlierkamp-Voosen, 1993). This
operator not carry out a sampling around the regions of
parents but it takes mto account the parents’ fitness.

Two parents Parent! and Parent’ generate Child"
Let, Parent'! be the parent with better fitness.
Accordingly, the offspring has genes calculated m the
following way:

Child} = Parent; + 1 xAxy (10)
where, A is calculated according to:
_ Parent’ -Parent! (1)

Parent® -Parent'

where, the minus sign is chosen with a probability of 0.9
and r; = 0.5(a-b). It should also be noted that each gene
Parent,’c[a, b;] and v equals to:

15
=3 a,2* (12)
k=10

where, [0, 1] 1s generated with random manner.

MATERIALS AND METHODS

The proposed crossover: After implementing the four
crossover operators described in the previous study and
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tested them on the optimization problem of a variety of
test functions we found that results differ sigmficantly
from one operator to another. This poses the problem
of selecting the adequate operator for real-world
problems for which no posterior verification of results
1s possible.

To help mitigate this non-trivial problem we present
in this section the outlines of a new crossover that we
propose as an alternative which can be useful when no
single other technique can be used with enough
confidence. The technique 1s a dynamic one in the sense
that the crossover can vary from one generation to
another. The underlying idea consists in finding a good
compromise between assuring some genetic diversity
within the population but may increase the convergence
time and producing best style of offspring that reduce the
convergence time but a possible risk of converging to
local mimma.

To achieve this goal, more than one crossover
operator are applied at each generation but in a
competitive way meamng that only results provided by
the operator with the best performance are actually taken
mto account. To assess and compare the performance of
candidate operators two objective criteria are employed.
The first criterion is the quality of solution; it can easily
be measured as a function of the fitness of the best
individual. The second criterion is the manner to create
the best style of offspring which is less evident to
quantify than the first one. Radcliffe (1993) proposed six
criteria for the best performance of crossover operator but
he has not suggested any comparison measure. Deb
proposed the spread factor of offspring conformed to the
parent, this measure provided the crossover ability to
create any random point in the search space. But the
distribution of the spread factor as a function of the
crossover varies in the same direction of the parent. ITn
this work, we reformulate this factor taking into account
the convergence of a population This convergence
represents the dynamics of grouping the individuals
around the optimum. To measure this characteristic, we
introduce the Euclidean distance between the barycentre
and the individual of the population:

.MZ
o

(13)

Where:

P, = Anindividual

0O, = The barycenter of all individuals
N = The population size

77

The modified spread factor become:

 Max(C,-0,. C,-0,)
?  Max(B-O,,P,-0,)

(14)

As a measure of the quality of the solution at each
generation, we used the following criterion:

&by

where, f_. and £, denote respectively the maximum and
the minimum values of the fitness at generation t and
£,.=1 orf, =f depending on the nature of the problem
which can be either a maximization or a minimization
problem. Finally, in order to combine the two criteria in a
unigue one we used the relation:

'e) (15)

(16)

RESULTS AND DISCUSSION

The proposed method is tested by a six functions
widely used in performance evaluation of GA operators.
Benchmark functions used in this paper have two
important features: modality and separability. Uni-modal
function is a function with only one global optimum. The
function is multi-modal if it has two or more local optima.
Multi-modal functions are more difficult to optimize
compared to uni-modal functions.

Description: Ackley problem, n = 5 multi-model:

[-02 ix’f} [%z“:cus(h[xi)}
f(x)=-20e" V' el +20+e

B0=x 30, x*=(0,0,.., 0}, fx*=0

B[

Cosinus mixture problem, n = 10:
£,(%) =Y x7-0.1Y cos(5mx,)
1=1 1=1
With:
-1€x, =1, x*=(0,0,..,0), f{(x*)=0.1xn
Goldstain-price problem, n = 2:

£, (R) = | 10t +x, 1) (19- 145, 3 -1, 630, +35] ) [ ¢

[30-+(2x,-3x, " (1832, +12x +48x,-36x,%, +27x] |
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2Ex, 22,x=(0,-1), f(x*)=3

Griewank problem, n = 5:

L)y =1+ K X; Hcos( }

600 <x, <600, x* = (0, 0,..., 0), f(x*) =0

Levy et montalvo problem 1, n = 5:

1=1

(%)= [wsm (ﬁy1)+2g(y1 }

g(y,) = (y,-1*[ 1+ 10sin’ (my, +1) | +(y, -1)’

y1:1+%(x1+ D, -5<x <5, x*=(-1,-,...,-1), f(x*) =0

Paviani problem, n=10:

02
10 10
£,(%) :2[(1n(x1-2))2+(1n(10-x1 ))2]+[Hxl}
1=1 i=1
2 <x, <10, x* = (9.350266, 9.350266,..., 9.350266)

f(x*) = -45.778470

In all experiments, the stochastic umform selection
was used. Parameters of GA for experiments were as
following.

Gaussian mutation with p,, mutation rate equal to 0.01
and crossover rate p,, varies for each run, a mumber of
independent runs for each experiment was 30, initial
population N of size 100 was randomly created and used
in experiments. Dimensionality of the search space D for
all test functions varie between 2 and 10. Number of
overall evaluations were set to 10000. For all test
funections, finding global mimmum 15 the objective. All
of the experiment are realized for six different types
of test functions. A comparison between the proposed
Crossover Method (CCQ) and other crossover methods in
terms of the quality assessment of the optimum provided
by the GA are made and the results are comparatively
presented in Table 1. To measure this quality, we used the
relative error:

_ | (17
f
Where:
t* = The optimum provided by the algorithm
f = The actual optimum which is a priori known
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Table 1: Relative error in percentage of the optima

Test functions Heuristic  Arithmetic SBX BGA CCO
F1 18 7 7 5 4
F2 5 5 6 5 3
F3 10 15 15 10 8
F4 10 15 10 16 3
Fs 25 18 21 22 9
Fo6 20 15 15 2 1
14
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Fig. 1: Convergence plot of the function F6
CCO gives better results according to other

crossover operators. Although, the most of crossover
operators showed similar results, CCO had shghtly better
results than the other crossover for Fl1, F2, F4, F5
functions. For F3 function, SBX operator has slightly near
the result than CCO. However, CCO operator produces
better results than other crossover operators. For F6
function, the results of this study are very close to those
of BGA but in generally CCO operator performed better
results than other crossover operators. The most
important advantage of the proposed method is that more
variety is presented in possible number of children
according to heuristic crossover and lmnear BGA
crossover. The experiments and the results presented in
the study clearly reveal the potential capability of the
proposed method in optimization processing based on
GA.

Figure 1 shows the convergence plots obtained by
minimizing the test function F6 1t 1s clear that CCO tends
to effectively exploit the search space, this is inferred by
the number of generations needed to find the optimum.

CONCLUSION

In this study, four well-known crossover operators
for GAs are studied, implemented and their relative
performance analysed and compared using a set of six
well-known test functions. These operators can be tested
with two criteria: the quality of the solution and the
spread of the distribution. The first one marks the
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performance of the crossover operator, the second shows
the spread of population distribution and the ability of GA
for not to be trapped in the local optima.

By contrast, the crossover operator proposed
exploits the advantages of each crossover used over the
evolution of the GA. The main idea belund this operator
15 the use of more than one crossover operator m a
competitive way together with an objective criterion
which allows choosing the best operator to adopt at each
generation. The proposed techmique was successfully
applied to the optinisation problem of a set of well-known
test functions which encourages further developments of

this 1dea.
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