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Abstract: Basic concepts of evaluation of algorithm complexity such as time and space complexity were
considered by its consumption of basic computer resources. Comparative investigation of operations of binary,
P and sliding window method of modular exponentiation with “left-to-right” and “right-to-left” reading bits of

exponent was conducted.
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INTRODUCTION

Traditionally, it is accepted to estimate the degree of
complexity of algorithm in terms of consumed basic
computer resources such as CPU time and RAM. Tn this
regard such concepts as time and space complexity of the
algorithm are introduced (Bellezza, 2001).

Time required to perform basic operations of
exponentiation algorithms: Time complexity parameter is
particularly important for applications with mteractive
mode of program or for real-time control tasks (Biham and
Shamir, 1997). It 1s necessary to spend some tiune to
perform the operations of modular exponentiation
algorithms (binary, B, sliding window methods).

Execution time of single operation of the algorithm
depends on the speed of processor, so it can be said that
in general, every single step of the algorithm 1s performed
during certain time. Basic operations of modular
exponentiation algorithms and time spent on each of them
can be represented as Table 1.

In general, it can be assumed that ratio between the
values of these tumes 1s as follows:

c<begeteresed (1

Table 1: Time required to perform basic operations of exponentiation

algorithms
Operation Time in ticks ~ Meaning of the operation
a=b C Simple assignment
z=xmodn B Modulus assignment
FIND(max {n,...n;}| Q Finding the longest sequence
isjtlzw,n;=1) of bits, so that i-j+l<wand n;= 1
N = (iy;...T9)5 T Representation  of nuwmbers  in

binary notation

vy =xxxmodm R Modulus squared
z=xxy mod m 8 Modular multip lication
z=v"mod m D Modular exp onentiation

On the basis of data in Table 1, we can construct a
mathematical model for calculating the time required to
perform each of the algorithms for the implementation of
methods of modular exponentiation. Following time is
required to perform binary method; “left-to-right” reading:

0
Tl(n):t+c+ 2 L+ 2 s, =t+
i=k-1 {iln} (2)
c+[logn |xr+H(n)xs

“right-to-left” reading:

k-1
T2(n)=t+c+b+ Y s+ > 1 =t+
filng} 1=0 (3)

¢+b+H(n)xs+|logn [xr
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Following time is required to perform P where wy(n) number of zero bits in the representation
method; “left-to-right” reading: of number n to the base B. Obviously that in binary
image numbers nellogn -H(n) of zero bits.

Bl i To convert number nto P notation, binary image 1s
T3(n,w)=t+c+ 2151 ; (d +s)=t+ " divided inte n windows with length of w. Therefore, the

= = 4 :

upper bound w,(n):

1 1
(I
W W
1 -H
W () {7( ogn] (“)J )
w

“right-to-left” reading:
On the other hand, the lower bound can easily be

Bl k-l )
T4{n,w)=t+b+ ch + Z(d{l‘n):n} +Sgcn T Doy ) + determined as: 1 !
flogﬂ wp (n) = ([logn]—Hin)) w (7
2c+ 2 s, —t+(2 +1)c+b+ o) (w—1)x[logn|
w=—1 W
d+ M ~wy(n)+ AT, N [V Following time is required to perform sliding window
w method; “left-to-right” reading:
Al
T5(n, wi|) b+s+ E 5 +t+ 2C+Z( r+c) {1\n :D}+(q+s+c+r){1‘n)¢n}) :b+s+(2\“’.\ _1)s+
8
t+20+(k7H(n))(r+c)+p(q+s+ o)t {|w, |+t W [) =t + bt 20+ kr+ 2Ms ¢ ®
p(g+s+c)+{k-H(n))e :t+b+(2+p+f10g1ﬂ7H(n))0+f10gn1r+(2lw‘| +p)s+pq
“right-to-left” reading:
1}
T6(n,|w,|)=t+b+ > ¢ +c+ E( r+°{1|n:n}+(q+S+°+d){1|ni¢n})+ Y (2s,)+o=t+
{1:1,3,...,2|""\—1} i=k-1 {v:2|""|—1,...,5,3} ©
9
b+(22|w‘|’2 +1)c+(k—H(n))(r+ c)+plats+etd)+2™ stc=t+b+
(22|W‘|72 +2+[logn |- H(n)+ p) ¢+ ([logn |~H{n})r+ ( yRAC I p)s+ pq+pd
Where:
P = The mumber of windows
(|wy|+..+|w,|) = The sum of all odd windows that equal to Hamming weight, since these windows consist of only
single bits
Obviously that:
| logn
Proax _’7 2 —‘
and
Pras {H(ﬂ (10)
Wl
Thus in general for the investigation of the execution time of this algorithm following average value can be used:
H(n) logn
S m

2

&7
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DETERMINATION OF THE
MOST PRODUCTIVE ALGORITHM OF
MODULAR EXPONENTIATION

It is obvious that to improve performance of
asymmetric encryption devices it is necessary to
determine the most productive of known algorithms of
modular exponentiation that are used in such devices. We
consider solution of this problemon the example of
described above binary, P and sliding window
methods.

As mentioned above, total execution time of the
algorithm of binary method is dependent only on the
length of binary image of number n. Execution time of the
algorithm of  method depends not only on the length of
the binary image of number n but also on the value of
(i.e. on the number w). Execution time of the algorithm of
sliding window method depends on the length of the
binary image of number n and on the width of odd
window. Taking this into account, it is possible to
investigate dependence of the execution time of the
algorithm on the length of binary image of number n.

Figure 1 shows thus dependence for the averaged
values of the Hamming weight (H(n)) and number of zeros
in the p image of number n (wy(n)) as well as for different
values of w, the width of odd window and values of c =1,
b=15,qg=16,t=1.6,r=1558 =16, d= 19 (the ratio
between the variables correspond to the number of ticks
that the processor spends to perform the corresponding
operations (Comer and Stevens, 2000).

In this case T1(n) and T2(n), T3(r, 2) and T3(n, 4)
execution time of “left-to-right” P algorithm of modular
exponentiation at w = 2 and w = 4, correspondingly. The
T4(n, 2) and T4(n, 4) execution time of “right-to-left” B
algorithm of modular exponentiation at w = 2 and w = 4,
correspondingly. T5(n, 3) and T6(n, 3) execution time of
“left-to-right” and “right-to-left” method of sliding
window at the length of the window w, = 3.

Analysis of Fig. 1 shows that the execution time of
algorithms of modular exponentiation is linear. Tn addition,
the fastest algorithms are that of “left-to-right” and
“right-to-left” B method and the most time consuming is
the algorithm of binary method.

Figure 2 and 3 shows, respectively the dependence of
speed of algorithms of “left-to-right™ and “right-to-left”
method on the value of power of w base at different key
length and at averaged value of the Hamming weight.

Using data from Fig. 2 and 3, we can determine the
optimum base at which there is the smallest delay in work
of algorithm, i.e., the minimum T3 and T4, respectively and
thus, provide maximum productivity for given values of
the exponent. For algorithms of B method values of w
presented in Table 2 will be the best.

Table 2: The optimum values of the power of bases of 3 method at different

length of n key
w ([ method)
Length of nkey “Left-to-right” “Right-to-left”
4096 8 7
2048 7 6
1024 6 5
512 6 5
256 5 4
2.5x104 T1
T2(n) (n) T5(n, 3)
4 L T6(n3)
1.5x10' Z T3(n, 2)
—~

T4(n, 2)

T4(n, 4)
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Fig. 1. Evaluation of the performance characteristics of

investigated algorithms
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Fig. 2: Dependence of the speed of algorithm of
“left-to-right” [ method on the value of the power

of w base
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speed of algorithm of
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Fig. 3: Dependence of the
of w base

of the algorithm,
consumption of computer memory for its execution,

Space complexity ie.,

becomes critical when the volume of data to be processed
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Table 3: The maximum number of memory cells involved in the execution
of algorithms of modular exponentiation
Modular exponentiation algorithm

The number of memory cells
BRinary 2

P 2"

Sliding window 27

1s almost equal to amount of RAM. In modem computers,
acuteness of tlus problem 1s reduced due to increase
m amount of Random Access Memory (RAM) and to
usage of multilevel storage system. For programs that
implement the algorithm very large, almost unlimited,
memary space (virtual memory) is available. Lack of main
memory only leads to a slowdown through the exchange
of data with the disk. Special techniques are used to
minimize the loss of time in this exchange. Tt is the usage
of cache memory and hardware preview of program
commands on the required number of steps ahead that
allows to transfer required values from disk to main
memory in advance (Kshetri and Murugesan, 2013;
Kurose and Ross, 2011). When performing considered
modular exponentiation algorithms maximum number of
registers according to Table 3 are busy in computer
memory.

Analysis of Table 3 shows that the largest
consumption of memory is during the execution of sliding
window algorithm, since length of the largest window can
be equal to the half length of the key. In the case of
modular exponentiation algorithm consumption of memory
depends on the chosen notation, ie., on the value
(Mangard et al., 2007).

60

CONCLUSION

Parameters of time and space complexity were
investigated. It was found that best methods for
application are P method and shiding window method of
modular exponentiation with “left-to-right” reading bits of
exponent.
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