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Mechanical-Mathematical Model of Mantle Diapirism
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Abstract: The analysis of geophysical and geological data on tectonic processes occwring in the peripheral
layers of the Earth, under the influence of local heated mantle material elevations from the lower mantle is
conducted. The assumption that there is a difference between the densities of substances originating from the
lower mantle and substances of the overlying asthenospheric layer is used. Here, this process 1s considered
as a process of hydrodynamic mstability. Physical model of ligh-viscosity liquids at low Reynolds numbers
15 used to describe the process. Based on analysis data in the literature on the mantle and salt diapirism, a
mechanical-mathematical model of mantle material elevation process through the density difference between
the overlying and underlying layers 1s proposed. An analytical solution of a mathematical problem resulting
from application of mechanical-mathematical modeling of mantle diapirism 15 obtained. Comparison of the results
of the analytical solution shows good agreement with the data obtained from the experiments and observations
of the salt dome.
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INTRODUCTION In recent studies (Kropotkin,

1996,

In the study of the Earth one important task is to
determme the dependence of the processes and
phenomena observed at the Earth’s suwrface on the
processes occurring in the deep interior of the Harth. This
task is important and its solution is relevant when
studying the structure and development of the Earth’s
crust.

According to the geophysical and geological
studies, there 13 a weak (asthenospheric) layer,
bounded above by the solid lithosphere and below by
a solid mesosphere (Hain, 2003; Belousov, 1991,
Dobretsov et al, 2001; Yerzhanov, 1964; Walcott,
1970; Ranalli, 1993; Bills et ai., 1994; De Bremacher, 1977).
And, here arises the problem of how to take into account
the effect of the lower regions of the Earth to the
and processes in the lithosphere and
asthenosphere layer and how this affects the earth’s
surface.

The limited amount of information about the physical
properties of substances of the underlying mantle and the

movements

processes taking place m 1it, forces us to make some
assurmptions.

Puscharovskly and Melanholina, 1992; Harper, 1978;
Manglik ef al., 1995; Lopez, 1991; Tychkov et al., 1999,
Nakado and Takeda, 1995), the researchers mostly
suggest the existence of local elevations of heated light
materials from the lower mantle which is the source of as
the no spheric substance movement both in the vertical
direction and its horizontal spread. This approach is also
used to explam the origin of the so-called “hot spots™
(Lopez, 1991; Tychkov et al., 1999). Tt was observed that
in addition to the mid-ocean ridges, 1sland arcs and active
continental margins, intense magmatism 15 also seen in
some areas within the plates, a typical example of this
Hawaii (Kropotkin, 1996; Puscharovskiy and Melanholina,
1992; Harper, 1978, Manglik et al., 1995; Lopez, 1991,
Tychkov et af., 1999, Nakado and Takeda, 1995). Such
anomalous areas (hot spots) in the mid-ocean ridges are
present in Iceland and the Azores. According to the
theory of plate tectonics “hot spots™ are associated with
streams emanating from the hot depths of the Earth’s
mantle, probably due to high intensity of magmatic
material stream and tecto no sphere permeability.

From the above, one can assume that there exist local
uplift and subsidence of subasthenospheric base. As

Corresponding Author: Taurbekova Ainur, Kazakh National Technical University Named after K.I. Satpayev,
Satpayev Street 22a, 050013 Almaty, Kazakhstan



Res. J. Applied Sci., 10 (2): 40-48, 2015

noted above, here the task of determining the analytical
form of these uplifts and subsidence is formulated, i.e., it
15 required to determine the form of the function
describing the change of the subasthenospheric base.

So, the following problem is put forth here: how to
determine the effect of active processes in the underlying
mantle on the asthenosphere and lLithosphere on the
process of terrestrial structure formation? In other words,
it i3 necessary to define the boundary conditions at the
boundary of the asthenosphere and mesosphere, ieon the
subasthenospheric base.

In the literature, about the Earth different hypotheses
and assumptions about the mechanisms of interaction
between as the no spheric layer with the underlying
mantle are considered (Hain, 2003; Belousov, 1991,
Dobretsov ef al., 2001; Yerzhanov, 1964). In most cases,
the tectonic activity is associated with the elevation of
strongly heated molten mantle material and this is seen as
the main cause of many tectomc processes. As noted
above, mantle substances are deposited into the
asthenosphere through restricted areas of sub as the no
spheric base. Depending on the intensity of the processes
occurring in the underlying mantle and tecto no sphere
permeability, various options of the interaction
mechanism of asthenosphere with the underlying layer are
possible. These
diapirismm, advection, the appearance of the plume and
others.

Therefore for the solution of this problem, you can
consider various boundary conditions on the sub as the
no spheric basis, arising from the assumptions and
hypotheses about the mechamsms of these processes.

One of the mechanisms of mantle substance elevation
and their penetration into the asthenosphere suggests
that mantle substances accumulate in the bottom of the
asthenosphere, spreading horizontally, thus forming a
new layer of high-viscosity liquids. In this case,
movements in asthenospheric layer should be modeled as
the movement of double-layered liquid with the density of
the underlying layer less than the density of the overlying
layer. Obviously, the problem of hydrodynamic instability
in double-layered high-viscosity liquids arises. There may
n turry, be possible following options: when the supply of
new mantle material from the lower layer continues and
when such a “make-up” stops.

In the case, when the amount of accumulated mass of
mantle material 1s significant or when the “makeup” with
new arrivals of this substance from the lower mantle
continues, elevation of the lower layer substances and
dropping of heavier upper layer substances occur. As a
resultof this process, the top of the boundary between
these layers may reach the upper boundary of the as the

include the mechanism of mantle
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no sphere, i.e., the base of the lithosphere which can lead
to major faults, rift zones in the body of the lithosphere,
accompanied by events such as volcamsm, magmatism,
selsmic activity and etc.

Another possible option is when the intensity of
these processes is insufficient or tecto no sphere
permeability by the rising mantle material 1s nsignificant,
then at some level elevation of the boundary between
layers may stop. Incomplete convection occurs. Such a
phenomenon in geotectonics is called “advection”. With
such a mechanism different processes that affect the
movement m the asthenosphere and lithosphere are also
possible.

In the case, when a limited amount of mantle material
gets into the asthenosphere and the process of receiving
them stops, then there may occur appearance of the
so-called plume. Plume is a single solid mass of mantle
material, by asthenospheric
substances. Because of the difference in density between
the plume and the enviromment this body moves up,
creating certain conditions for the emergence of different
specific processes. Plume is detected by geophysical
methods as n tectonically active regions, so under
relatively stable continental plates. The study of the
plume became relevant due to the study of tectonically
active regions such as rift zones, in particular, the
Baikal rift zone (Dobretsov et al.,, 2001; Tychkov et al,
1999),

The above-described mechanisms of mantle material
penetration into the asthenosphere are possible in cases
where they are not mixed with the material of the
asthenosphere.

If mantle substances flowing into the asthenosphere
from the lower mantle are mixed with the material of the
asthenosphere, the process will have a completely
different look. Then the problem of asthenospheric
motions will be formulated another way. In this case, the
motion will be considered in the viscous layer when in
some local area on its lower boundary the rate of elevation
or subsidence (or flow rate) is given. And, there are
various options: either this is a continuous process when
for a long period of geologic time there is “metabolism”
between the asthenosphere and the underlying mantle
{convective mechanism) or this process is associated with
short-term  “release” of mantle material into the
asthenosphere (“pulsing” mechanism).

In contrast to traditional views of the convective
motions m the mantle (D.P. McKenzie, I M. Roberts, N.O.
Weiss, Nakada Masao, A. Grigoriev, T.L. Tolkunova,
etc.), Erzhanov Zh.S proposed to consider the model
which assumes the existence beneath the asthenosphere
This

bounded on all sides

of “sinks” and “sources” of mantle materials.
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mechanism of mantle material flows would allow the
description of interesting phenomena such as moving
apart (spreading) and subduction of lithospheric plates.
Interest mn this 1ssue 1s due to the ever-increasing
expression of interest in the investigation of ocean
margins (YuM. Puscharovsky, EN. Melankholina,
Peyve A V., 3.V. Ruzhentsev, etc.) and mid-ocean ridges.
The solution to such problems would also be useful to
describe lito spheric plate tectonics which would make it
possible to assess many of the allegations of the
continental drift hypothesis.

A brief overview of possible mechanisms of tectonic
movements under the influence of endogenous
processes, estimated in various geological hypotheses is
conducted. It showed the wide range of problems arising
during the solution of this problem, especially problems
of continuum mechanics.

Later in this study will be considered the i1ssues of
formulation of the boundary conditions on problems of
the interaction of asthenosphere with the underlying
mantle for some options of the above mechanisms.

PHYSICAL ESSENCE OF THE
HYDRODYNAMIC IN STABILITY MECHANISM

Now the question is: how does the process of mutual
penetration of liquid layers with higher dynamic viscosity
coefficients take place and when the density of the lower
layer is less than the density of the top layer? Below is a
description of the process occurring at the boundary of
these two layers of high-viscosity liquids.

Let’s consider a Cartesian coordinate system xoz
(Fig. 1) and at some imtial time in the neighborhood of a
point (for definiteness with x = 0) at the boundary
between the layers of liquid an equilibrium violation
happened. This means that a function £ (x, t) that
describes this boundary, obtains an increment in the
neighborthood of the point x = 0, i.e, with Ax>0 the
rate of change of the function 18 AZ = £ (Ax, t)-£ (0, t).
Then the pressure difference created in the lower layer
Ap =p, (A%, t)-p, (0, t).

Because of the small thickness of the liquid layer it
was assumed that the dimensionless pressure in the lower
layer is given by Eq. 1 (Lavrentiev and Shabat, 1972):

p1:p17pzxé1_z+p72><éz @)
P Py
Where:
L =8
£, = Yet considered a constant
In this case, the pressure drop i3 equal to

Ap = (prpE(Ax, 1)-EY(0, t)]. If we assume that the
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Fig. 1: Graph of the function Z,(x, t) whenn =1
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function £ (x, t) reaches its maximumat x = 0, then with a
positive value of the argument increment (Ax>0) function
increment is equal to AZ; = £,(Ax, t)-£,(0, t).

Tt follows that with p,>p, the pressure drop Ap<0 for
the area x>0. Because of such a negative pressure
differential, movement occurs in the lower layer of the
liquid the horizontal velocity of which is directed from the
center of the boundary elevation (x = 0) toward its lowered
areas, 1.e., flow of liqud occurs to restore equilibrium
condition. This process 1s well studied and its mecharnism
is largely understood. Results of the solution of a similar
problem are used to describe the elevation of Earth’s crust
after deglaciation m particular, post-glacial uplift of
Femmoscandia (Walcott, 1970).

Now suppose p,<p,, then for the area x>0 pressure
drop is Ap>0. This means that due to the positive
pressure drop, movement in the opposite direction occurs,
1.e., substances of the lower layer of the nearby area move
to the center of boundary elevation (x = 0) and the top
layer substances that are above the area of boundary
elevation between the layers are moved to the areas of its
descent.

In the points of elevation sufficiently remote from the
center, the pressure drop 1s virtually zero, hence, the
horizontal velocity of the liquid there must be negligibly
small. Therefore, rising bottom layer substances are
compensated by substances close to the center of the
elevationof areas and there occurs lowering of the
boundary z = £(x, t); these areas will be filled with
substances of the upper layer. This process m turmn,
increases the pressure drop that accelerates the elevation
of substances at the elevation center neighborhood
points.

Lowering of the more dense materials of the upper
layer in the center of the considered region prevents mass

transfer from the outermost regions. This ensures the
locality of substance elevation of the lower layer
Increasing the pressure drop can cause, under favorable
conditions, the appearance of new local substance
elevations of the lower layer in the areas situated at a
sufficient distance from the considered local boundary
elevation between layers.
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STATEMENT OF THE PROBLEM OF
DETERMINING THE BOUNDARIES
BETWEEN VISCUOUS LAYERS

The above shows the physical nature of the studied
process occurring at the imterface of two layers with
different densities. For a quantitative analysis of this
process you should try to get the boundary variation law
in the form of an analytical formula. For this, mathematical

problems resulting from mechanical-mathematical
modeling of the process described here, must
beformulated and solved.

Obviously, the mathematical problems that will be
posed and solved here are related to partial differential
equations. To search for partial solutions of these
equations as well as for the analysis of the results, mutial
and boundary conditions should be given. In contrast to
conventional problems of mathematical physics, there are
some features in the formulation of these problems as well
as in the formulation of the conditions for their solutions.

As noted earlier, the process of lower layer
substanceelevation andof upper layer substance lowering
of the highly viscous liquids is very slow and long.
Therefore, there could be considered the problem
“without initial conditions” (Tikhonov and Samarskii,
1977). It 1s assumed that at t~- the boundary between
the layers of the liquid was mn the original equilibrivm and
the slow rise of a small section of the border due to
violations of the equilibrium state began. Then the
problem should be considered in the time interval -eo<it<t,
where t, the times corresponding for the top of the
boundary to reach the upper boundary of the upper layer.
After this pomnt, there 1s a “gap” of the upper layer and a
violation of the contimnty conditions which was expected
in the problem statement.

Here, it is advisable to turn to the physical nature of
the problem. In this task, the motion of the liquid itself and
the boundary change between the layers will be free. The
mnpact of all factors other than gravity and viscosity is
neglected. Movements are due to density differences of
the layers. Then, we can consider the following statement
to hold: durmg the of heavy
mcompressible ighly viscous liquids in the gravitational
field under the influence of the density difference of its
layers, a change in their boundaries at any point leads to
corresponding changes in its other locations.

From this statement, it follows that for the solution of
the problem of theboundary change between the layers of
the liquid, it is enough to consider its position in only one

free movement

characteristic point. This means that you can record
(measure) values of peak elevation height (for x = 0) of
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local elevation for any point in time. For example fort=0
(the starting time) or t = 1 (end of the reporting period).
Note that the choice of points in time 1s conditional.

This approach 1s useful for practice. In most cases,
during the study of the processes occurring in the Earth’s
crust the data aredefined for the last periods or from
situation in real time. Then, the task of determimng them
in earlier geological periods is placed. This approach will
be used further to solve partial problems.

Now, it 1s necessary to comsider the boundary
conditions. As has been suggested, a separate local
boundary elevation between layers of liquid is
considered. Because of the isotropy of the considered
layers, position of the boundary layer is symmetric about
the wvertical z axis. This allows you to limit the
consideration of semi-infinite region O<x+eo, considering
the point x = 0 to be the elevation center. Then the
function £(x, t) that determines the boundary under
consideration, satisfies the condition £(-x, t) = E(x, t).
Since, atx = 0 the function £ (x, t) reaches its maximum you
can use the following boundary condition here:

o (x,1)
ax

0

On the right boundary of the interval [0, <] the
condition that the required function’s £ (s, t) = O equality
to zero 1s given.

Tt should be noted that the analytical selution of this
problem in an infinite point condition does not cause any
problems. However, the numerical solution of the problem
with this boundary condition causes some difficulty. In
many cases, the condition at infinity is replaced by the
condition at the end point x = x, for which and also also
for values x>xy, the required function has sufficiently
small values or its derivative can be considered = 0.

DETERMINING THE UPPER
DOME-SHAPED BOUNDARY OF
THE ELEVATING MANTLE FLOW

Suppose, it is assumed that a certain layer of less
dense meantle material appeared at the bottom of the
asthenospheric layer of the local area. The substances of
the two layers do not mix. This raises the problem of
determining the boundary between these layers when the
density of the lower layer substance is less than the
density of the top layer. Attention is drawn to the fact
that this boundary 15 moving.

Problem that 1s stated m the previous paragraph,
about the defimtion of an analytic function describing the
change of subasthenospheric base can be solved in two
ways. In one case, you need to consider the problem of
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hydrodynamic instability when the underlying layer of
liquid has a lower density than the density of the
overlying layer of liqud. Another way to determine the
required function can be an approximation of the available
experiment data and observations of such phenomena.

The second method of determining the standard form
of the desired function on the basis of data analysis on
the phenomenon known as the salt strata elevation
process and the formation of salt domes is considered
initially. In geology, the process is called salt diapirism
(Harbaugh and Bonham-Carter, 1970; Ramberg, 1985). A
great deal of research has been devoted to the problem of
studying the salt strata and its relevance is undeniable. It
is primarily concerned with the exploration and production
of o1l and gas. In this study, these 1ssues are not directly
addressed. However, the research results of these
processes performed by different researchers of thick salt
tectonics and published in the press are used. The reason
for this s the analogy between the process of salt
diapirism and mantle diapirism, assumed as one of
the causes of tectonic movements in the
“lithosphere-asthenosphere” system.

According to popular opimon among geologists
about the appearance of the salt domes (Harbaugh and
Bonham-Carter, 1970), the elevation mechanism of salt
whose density is less than the density of the rock
surrounding it 18 similar to mantle diapirism when molten
light mantle substances elevate. There are experimental
studies, in particular, Ramberg (1985) which show the
shape of the border of rising matter. And Howard
(Harbaugh and Bonham-Carter, 1970) shows a graphical
view of the boundary using computer sumulation of the
results of salt strata elevation observations (Fig. 1).

Comparison of the results obtained by Harbaugh and
Bonham-Carter (1970) and Ramberg (1985) shows that
the graph of the function shown in Fig. 1, agrees
well with the results of experiments conducted by
Ramberg. However, this chart shows only the general
graphical form of the border. It 1s impossible to determine
its analytical formula and to describe the dynamics of the
process, ie., change of the required function at time t
using the graph. Despite this, we can accept this function
graphas an approximating curve of the Ramberg
experimental data and salt dome elevation observations.
It should be noted that Howard noted a number of
properties of the function that can be used to construct
an analytic formula of this graph.

Let z = 7Z(x, t) denote the recuired function. Time t
will be considered a parameter for now and the
dependence of the required function on this parameter will
be is unknown for now. Because a dependence on t can
not be set using the Howard and Ramberg graphical data.
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Tt should be noted that we are considering some
single (local) elevation of lower layersubstance. Because
of the strong viscosity of the layer, it 1s assumed that
another elevation 1s placed a sufficient distance from the
first.

This raises the problem of determining an analytical
formula that describes the border between the rising liquid
and its environment shown in Fig. 1 where the z is vertical,
x 18 horizontal axis, t-time.

Based on the analysis conducted by Harbaugh and
Bonham-Carter (1970) and Ramberg (1985), it is first
necessary to formulate the conditions that must satisfy
the required function z = Z,(x, t), 1.e., formulate its basic
properties. They are:

»  The function z = Z,(x, t) must have a pomt of local
maximum (mimmum). This means that the material of
the lower layer rises up through some relatively small
“channels”™ Without loss of generality we can
assume that the local maximum (minimum) is attained
at x = 0 and can be called the center of elevation
(lowering)

s The function z = 7Z,(x, t) must be defined and
continuous everywhere x £(-cotoo)

¢ The function z = 7. (x, t) is even and symmetrical with
respect to axis z, 1.e., condition Z (-x, t) = Z,(x, t) holds

» At points far enough away from the center of
elevation (x = 0), the finction Z (x, t) has very small
values, 1.e. as x~+e and x--c limit lim Z (x, t) =0

* From the conservation of mass (volume) of the
substances follows the condition of the equality to
zero of the following integrals:

[Tz, t) de=[ "z (x.t) dx [ 2z (xt) dx =0
s Areas of elevation and subsidence are equal, i.e.:

Ufj z,(x) ax=2([ "z, (x. ) d

where, x =1x,- the points of intersection of the graph of a
function with the horizontal axis, i.e., Z{4x,, t) = 0. All the
above mentioned properties of the function are related to
the kanematics of the problem of a slow elevation of light
substances up and heavy down.

General view of the required function 7 (x, t) which
satisfies all the above conditions can be written as
follows:

Zx, 1) = (Dxexp (9 (O [1b (0] (2)
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Where:
P(t), @t), b(t) = Unknown function of time for now
n = An mteger (n = 1, 2, 3,..) and also

e(t)>0

Function (Eq. 1) is valid for local elevation. Tf we
consider a local subsidence, the sign mn front of it will be
negative.

From the condition of the integrals” equality to zero
(condition 5), you can get the relationship between the
functions @(t), b(t) and parameterm n:

bit) = [2 o()]" (3)
Ix3x5..x2n-1)

Then Eq. 2 may have a different view:

Z,0,8) = yrtyxexp [ty x ]
N £ O (4)
135 < (2xn—1)

and the required function will depend on two unknown
functions Yi(t), @(t) as well as on the parameter n.

Function i(t) determines the law of motion of the
elevation center (at x = 0) and the elevation amplitude of
the top of itsgraph. If we consider the elevation, then
P(t)=0, conversely, if subsidence, then (t)<0.

From Eq. 1 it follows that the null value of the
function Z,(x, t) 1s reached at two pomts -x, and +x,
symmetrically located with respect to the ordinate:

:[1><3><5 """ (2n_1)]n (5)

10-x,
,j Zx@(t)

This shows that the points x = +x, are “mobile”, 1e.,
they depend on the value of the function @(t). The
lower the value of @(t), the greater the value of x; and vice
versa. This means that the function @(t) describes the
“width” of the function Z (x, t) graph in the horizontal
direction.

The above means that there is a relationship between
functions Yi(t) and @(t) that must be determined from the
dynamic conditions of the problem of hydrodynamic
instability of high-viscosity liquids, when the lower layer
has a lower density than the density of the upper layer.

SOME PROPERTIES OF THE FUNCTION
Z,(x,t) FOR THE CASE n=1

Let the parameter n = 1. In this case, the first function
Z{x, t) of the family (Eq. 4) will have the form:

Z, (3%, =) < exp[ @ty x*]x (6)
[1-2x@(t)xx]

The first partial derivative of this function with
respect to time t is defined as:

a

a; = expl-@(t0x X" ST (5) = WD @D xTx 9y

[1-2x@(0xx"]- 2w (- @ (> x"}

Now, you need to find it first and second derivatives
with respect to x:

a

9o 2yt (1) exp [—g(D) < x]x
>4

[Zx@(t)xx® —3xx];

We can show that this function Z (x, t) satisfies the
following properties.

Property 1: At the point x, = 0 maximum of the function
Z(x, t)1sreached. Here, its maximum value is equal to max
Z,(0.0)= (D).

Indeed, the condition of the maximum at this point
aresatisfied. In fact, at this point, its first derivative with
respect to x 1s zero (a necessary condition) and the
second derivative is negative if Y(t)=0 (a sufficient
condition).

Property 2: Similarly, we can show that at the
points x;=tfi5xet) the mimmum of the function
min Z,(x, t) = 0.431 x(t) is reached.

Property 3: Function Z (x, t) 13 zero at two poimnts:

1 . 0.71

a5 =71 ==
BT e Jom

Property 4: Function Z, , has four mflection points:

w4 |3tN6 | 165
TN 2xel T et
wzi 3 —Aj6 =i0'5246

2 qlt) \lcp(t)

Thus, the graph of the function is characterized by
nine points. Coordinates of these points are dependent on
the time t and their values change simultancously with
time (Fig. 1).

45



Res. J. Applied Sci., 10 (2): 40-48, 2015

ANALYTICAL SOLUTION OF THE PROBLEM

Based on the analysis of Harbaugh and
Bonham-Carter (1970) and Ramberg (1985) research
results, a form of the function Z (x, t) which describes
closely enough the boundary between rising (light)
substances and heavier upper substances has been
obtained. However, the results of these studies can not
take into account the dynamics of the process, so the
variable t m the function Z,(x, t) played the role of some
parameter. Meanwhile, the dependence of the function on
time is not explicitly defined. Consequently, the function
7.(x, t) 1s defined, depending on the unknown functions
@(t) and Y(t). These functions can determine the
dynamics of the process at hand but the published
information does not reflect the nature of these functions.
To determme the unknown functions @(t) and (t), it is
required to formulate and solve the problem of
hydrodynamic stability in double-layered high-viscosity
liquds when the density of the lower layer is less than the
density of the top layer.

Let’s consider two layers of high-viscosity liquids for
which the Reynolds numbers will be small. It is assumed
that the density p, of the lower layer 1s less than the
density p, of the top layer. The upper surface of the top
layer is considered free and the bottom (base) of the lower
layer 1s considered a stationary surface. On the boundary
surface between the layers the conditions of continuity
and equality of speed hold.

For these layers recognition of the “shallow water” is
assumed when the amplitudes of local elevation and
subsidence of layer boundaries are comparable to their
average thickness (vertical dumension) and they are small
compared to the horizontal dimensions. Any violation of
the equilibrium state at the boundary between the layers
15 the cause of motion in the layers. The movement in
these layers is due to the difference of densities of layers.
In Kuralbayev (2005), a system of differential equations
for the boundary surfaces is obtained: z = E(x, t) the
boundary between the layers; z = £,(x, t) the free surface
of the upper layer. It represents a system of two
parabolic-type partial differential ecuations of second

order:
a—é‘:—afxaZal +al 0%, 9, __al
2 27
ot ax azéax aatza 2 (9)
3h, ~h L+ a) :
(3h, ~h,)x % +azxax2

Here, we use the following notation of the constants:
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afzgxipz B xh!, al 7§><p—2><[h§ +
3 1 Py (10)
(h, 7h1)3x(&71)]> ai :ﬁxp_zx (3h, 7h1)><h12
n, 6 |
Where:
h, = The dimensionless wmtial capacity (thickness)
of the lower layer
h,-h, Thickness of the upper layer
My, M, = Dynamic coefficients of viscosity of the lower
and upper layers, respectively
ER = pgll’MUL a dimensionless parameter
(Erzhanov’s number)
U,H,L= Adopted characteristic values, speed,
thickness and the horizontal size, respectively
g = Acceleration of gravity

In this research, an analytical solution of this system
of equations which has the following form:

A

— =X exp
(B* —4xa’ xt)

2x %
Kl
B —4xa‘xt
In the given Eq. 11, a* constant parameter that
depends on the properties of the considered layers of

high-viscosity liquids. It 1s defined by the following
(Kuralbayev, 2005):

£(xt)=
(1)

B —dxa’xt

o al —a’ +J(af +aly —2a’al{3h, —h,)
2

(12)

This solution is written in general form; it depends on
the unknown constants and integration of A and B. It is
easily seen that functon (Eq. 10) satisfies all the
properties of the function Z.(x, t) described mn the
preceding paragraph. Therefore, the following equation:
Z.(x, ) = £,(x, t) can be written within the accuracy of a
constant value. Satisfaction of this equation allows to
determine the functions @(t) and Yr{t):

1
) [ S—
o Bf —dxa’xt

A

e —
W JB —4xatxty

Thus, the solution to the problem of determining the
form of the function describing the elevation of light
mantle substances under the influence of density
differences arising from the high temperatures m the lower
marntle has been obtained.

(13)
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The analysis of the solution to the problem leads to
the following conclusions: With an increase in the
relative demsity difference of considered layers p,-p./p;
elevating bottom layer substances will actively influence
the movement of the upper layer and contribute to
elevation of the free surface of the upper layer. Depending
on the values of this magmtude, the amplitude of the free
surface elevation comprised from about 3-10% of the
amplitude of the boundary surface between the layers.

By increasing the ratio of the dynamic viscosity of
the lower layer to the dynamic coefficient of the top layer
M,/M; (at a low viscosity of the top layer), the substances
of the upper layer have time to spread in the horizontal
direction and the free surface of the layer will change in
sigrificantly.

The resulting function Z (x, t) = £,(x, t) defines the
behavior of local sub as the no spheric border elevations
as a result of mantle material elevation from the deep
mterior of the Earth in the “imtial period” of mantle
diapirism.

CONCLUSION

In this study, the solution has been performed to the
problem related to determination of the upper boundary of
the ascending mantle flow changing process under the
mfluence of density differences which led to the
hydrodynamic instability mn the asthenosphere layer of
the Earth. From the analysis of the information available
n the geological and geophysical literature (Hain, 2003,
Belousov, 1991; Dobretsov et al., 2001; Yerzhanov and
Rock, 1964, Walcott, 1970b; Ranalli, 1993; Bills et «i.,
1994, De Bremacher, 1977, Kropotkin, 1996;
Puscharovskiy and Melanholina, 1992; Harper, 1978;
Manglik et al., 1995; Lopez, 1991; Tychkov et al., 1999,
Nakado and Takeda, 1995; Nalpas and Brem, 1993,
Harbaugh and Bonham-Carter, 1970; Ramberg, 1985), the
basic properties of the fimetion 7 (x, t) that describes the
process in question have been established. Analytical
solution of a mathematical problem, obtained by
mechanical-mathematical modeling, allowed us to obtain
a function whose properties completely correspond to the
physical nature of the process of hydrodynamic
instability in double-layered high-viscosity liquids.
Function obtained from the analytical solution of this
problemis in fairly good agreement with the results
published by Harbaugh and Beonham-Carter (1970) and
Ramberg (1985).

The practical value of the function obtained here is
that it describes quite well the kinematics of the process
of emergence and evolution of salt domes or mantle
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diapirism. The use of such a function may be useful in the
study of the dynamics of such processes. Function can
be used to describe both the mdividual local dome and to
describe the ascending mantle flow beneath nifts and
mid-ocean ridges. The possibility of determining the
function through some characteristic points facilitates the
measurement of modem movements of the earth’s crust in
of elevation or subsidence of the earth’s
The proposed function useful for
approximating the results of observations or experimental
data in the study of the hydrodynamic instability
phenomenon. Tt can also be used to explain the salt dome
elevation mechanism.

the areas

surface. is
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