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Abstract: Tt is shown that the classical Chi-Square test has insufficient capacity for efficient processing of

biometric data. Tt is shown that there is a possibility to increase the power of statistical processing through the

use of several well-known statistical tests, through the neural network combimng their private decisions.
Contains tables of formulas promising statistical criteria that complement already used statistical tests.

Considered the influence of quantization errors caused by the small amount of experience in the test sample.
Proposed to raise the reliability of the estimates due to the digital smoothing of histograms with uniform

quantization step. Shows the tables and nomograms to assess the reduction in the probability of errors of the

first and second order transition to multivariate statistical analysis of biometric data.
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INTRODUCTION

One of the most popular in the statistical analysis of
the data is Pearson. In particular, only the Chi-Squared
Pearson devoted entirely to the first part of the
recommendations of the State Standard wlhile all other
criteria are described in the second part of the
recommendations  (Anonymous,  2002).  Detailed
description of Pearson in the first part of the
recommendations of the State Standard reflects the high
demand for this particular industry criteria. Most of the
methods of statistical analysis of experimental data using
built on the Chui-Square test:
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Where:

b, = Number of experiments have got the ith interval
histogram the expected theoretical probability of
hitting the ith interval lustogram

n = The number of tests in the test sample

k = Number of columns of the lustogram

The popularity of using the Chi-Square of Pearson in
the industry 1s largely due to the fact that when n-e its
distribution is described by the gamma function with
m = k-1 degrees of freedom:

sz(n:w,m:k—lax):

2t (2)

Analytical description of Eq. 2 was obtained by
Pearson in 1904 and played a crucial role in the first half of
the 20th century when the computing power used in the
statistical processing of data were very, very limited.

Tt should be emphasized that the presence of an
analytical description of the Chi-Squared Pearson made
this criterion is the most popular among practitioners
(Kobzar, 2006, Mirvaliev and Nikulin, 1992; Lemeshlko and
Postovalov, 1998) and among researchers belonging to
different school of mathematics (Aguirre and Nilkulin,
1994; Mann and Wald, 1942; Gjlberg and Leuine, 1945,
Aroian, 1973). Significant problems arise when trying to
use of the Chi-Square test for the statistical analysis of
biometric data. These problems are the subject of
numerous articles in  professional journals Oxford
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Fig. 1: Block diagram of the organization of the numerical experiment on capacity of one-dimensional Chi-Square test

“Biometrika” (Cochran, 1954; Gilbert, 1977; Pearson, 1939,
Cadwell, 1952) which comes out since 1901 and in the last
century was
reflected the many features of biometric statistics.
Unfortunately, the traditional use of the Chi-Square test
for multivariate dependent biometric data has been
poorly studied and one-dimensional test circuits require
large amounts of data. In particular, for decision-making
on the one-dimensional criteria of the Pearson with
0.99 confidence level is necessary to use a sample of
400 test results. The use of such a large test samples is
unacceptable for biometrics, it 15 necessary to achieve
their reduction by about an order.

As arule, biometric data samples are low. The number
of analyzes of biomaterials in medicine is limited and
each of analyzes has a sufficiently high cost. At the
training of biometric authentication (Bolle et al., 2007,
Alhmetov et ol., 2013, 2014¢) people feel comfortable
when 1t 1s neccessary to show from 9-20 examples of
their biometric image. If the requiring people to presenting
their 30 or more examples of biometric images, people
perceive it negatively. According to users, significantly
decreases ergonomics biometric authentication because
of the need to test and train them on large samples.

the most authoritative edition which

Assessment of capacity one-dimensional Chi-Square
criterion of statistical verification of likelihood
hypothesis test of the normal distribution: When
organizing numerical experiment, starting from the fact
that should be checked two statistical hypotheses. The
first hypothesis 1s that these test samples have normal
distribution of values. The second hypothesis 1s that the
data of the same sample may have a normal distribution of
values. As a consequence, the organization of a numerical
experiment requires to use two pseudo random
generator program data as shown in the block diagram
of Fig. 1.
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Fig. 2: Histograms of the distribution of values of
one-dimensional Chi-Square criterion for testing
the hypothesis of normality and uniformity
hypothesis input

Each of the generators of random data G1 (normal
data) and T2 (data uniformly distributed) randomly
inputted into the calculator values of the Chi-Square
test (1). Then the values Chi-Square test should be
compared with a certain threshold quantizer. If the
Chi-Square value less than the threshold, the decision
about the normality of input investigated. Tf the value of
the Chi-Square test (1) is higher than the threshold, then
a decision is made about the most probable values of a
uniform distribution law. Figure 2 shows plots of the
histogram distribution of values of the Chi-Square test
data obtained from the two program generators.
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Table 1: The Pgg error probabilities for different thresholds and different values of the input dimension-q independent data

No. of experiments n 9 16 25 36 49 64 81 100 121

No. of columns of histogram (K) 3 4 5 6 7 8 9 10 11

Value of probabhilities Pgg = P)= P,; dimension of the task
q=1 0.420 0.320 0.280 0.220 0.160 0.140 0.130 0.120 0.090
q=2 0.389 0.262 0.169 0.109 0.080 0.040 0.028 0.023 0.021
q=3 0.355 0.216 0.119 0.008 0.032 0.024 0.013 0.009 0.006
q—4 0332 0.187 0.089 0.054 0.019 0.010 0.006 0.004 0.003
q=> 0304 0.154 0.061 0.027 0.012 0.006 0.004 0.002 0.001

Thresholds to ensure probabilities Pgz = P1= P,; quantization thresholds
q=1 21 31 4.4 5.7 83 11.100 13.600 17.100 19.200
q=2 22 32 4.8 4.8 9.1 11.500 14.400 17.900 20.100
q=3 22 32 5.0 0.9 92 11.600 14.300 17.800 20.200
q—4 21 32 4.9 8.9 92 11.500 14.500 17.800 20.100
q=5 21 32 4.9 0.9 9.2 11.600 14.400 17.900 20.100

Numerical modeling results need further analysis

which is corpphcgted by the presence of .tVV(.J kinds of % C2(V, Vs, ..., Vo)

errors. The first kind error occurs (false rejection of true

hypothesis) with probability P1 and occurs an error of the (V) 7 1

. . . . 2 ——»|

second kind (false acceptance mcorrect hypothesis) with S L/ & >

probability P2, Analyzing the probability of errors of the 0 P 0

first and second kinds 1s difficult. In this regard, simplify

the problem through its symmetrization and continue to —{ c2(V)

consider only equal probability of errors of the first and
second kinds Py, = P1 =P2. Figure 2a, b marked pouring
equal probabilities of errors of the first and second kind.
This figure shows that by increasing the number of
experiments, ncreases the number of columns and the
histogram Type T and IT errors falls equiprobable.

So, at 25 experuments uses k = 5 columns histogram
that provides an equal probability of error 0.242 cm
m Fig. 2. However, even at 8] experiences can be
used 9 columns of the histogram that provides equal
probability of occurrence of errors of the first and second
kinds at the level of 0.129. Increasing the size of the test
sample results in 3 times leads to reducing the
likelithood of errors in two-fold. Observed nonlinear
dependence of the number of tests i the test sample 1s
growing much faster in comparison with the
corresponding drop m the probability of error Py, The
relationship between these two quantities is reflected in
Table 1.

MATERIALS AND METHODS

Multivariate statistical analysis by adding private
Chi-Square criteria: Tt should be noted that biometric
data are multidimensional. Particularly, neural
transmitter biometrics code freely available simulation
environment “BioNeyroAvtograf”, converts 416 of
biometric parameters in the code of private key length of
256 bits. That 1s, there 13 an opportunity to analyze not
just one but 416 biometric parameters. If we have a sample
of 16 examples, then there is an opportunity to analyze
16x416 = 6656 samples. There is a real opportunity to
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Fig. 3: Multivariate statistical processing of data by
network of Pearson

increase the amount of data to be processed and thus
raise the reliability of decisions (Serikova et al., 2015). For
the multi-dimensional processing use adding the private
criteria of Pearson:

XLV, v, =
KO+ XV )+t XV 3)
q

Transformation Eq. 3 is equivalent to the use of
the private criteria of Pearson, Pearson network
structure is shown in Fig. 3. The network of private
criteria of Chi-Square Pearson has input and output
nonlmear transformations and linear summation of data
between them. In fact, the conversion is carried out in
accordance with the multi-dimensional model of
Hammerstem-Wiener (Billings, 1980; Ivanov, 2002) which
is formally a neuron with input nonlinear transformations
of Pearson.

In the transition to the modeling of a network of
private Chi-Squared criteria of Pearson it is enough
instead of two software random number generators use q
steam generators. When low-dimensional input data <16
special difficulties in programming numerical experiment
does not arise. Table 1 shows the values of equal
probabilities of errors of the first and second kind for
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Fig. 4: Distribution of the output data of three

dimensional network of Pearson for 25 and &1 runs

different values of the output of the quantizer
thresholds Pearson networks as well as for different
mput dimension.

Note that the threshold wvalue is equal to the
probability of errors 1s almost the same for all mdicators
dimension Table 1. This is an extremely interesting fact
that shows a significant sumplification of the problem
because of a correctly symmetrization. An illustration of
this situation is Fig. 4 which shows the distribution of
distances at the output of three-dimensional network of
Pearson for the normal and umform laws of the
distribution of values.

If we compare Fig. 2 and 4, it 13 easy to identify the
effect of linear separability of growth, considered the
distribution of values as the number of experiments in the
training set and the growth of a network of private
dimension of Pearson. This means that by increasing the
dimension of the statistical processing, we can
substantially reduce the requirements to the dimensions
of the training sample. Thus, when a one-dimensional
treatment to receive PEE = 0.1 requires to use a test
sample of 112 experiments. If using a two-dimensional
statistical processing of data, for the same probability of
error Pg; = 0.1 requires a sample of 41 experience. There is
almost two-fold reduction in the requirements for the size
of the training sample.

It should be noted that the data m Table 1 were
obtained for the number of independent (uncorrelated
state program generators). Actual biometric data 1s always
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dependent (Ivanov, 2002; Akhmetov et al., 2014b, 2012)
which leads to a decrease in gain from the transition to
multivariate statistical criteria. However, the gain of the
multi-dimensional data 1s always present and
significant.

1s

Analytical description of the Chi-Squared distributions
for finite samples when testing the hypothesis of the
normal distribution of one-dimensional values: An
important property of the Chi-Squared distributions 1s that
they have a precise analytical description, not only for an
infinite amount of samples n = <. The results of numerical
experiments have shown that for n = 9, 16, 25, 36, 49
density of Chi-Square distribution is described by
Pearson gamma function with integer exponents number
of degrees of freedom. In particular, the final sample
of 16 experiments (four columns of the histogram),
the density distribution 1s described by the following
Eq. 4
pxz(qzl,n:16, m=3,x)=
E
X(2x)? xe?

(h

3

o

2><22><F(3]
2

For two-dimensional Chi-Square criteria Pearson

density  distribution described by the
Eq. 4

18 same
pxz(q:Z,n:16, m=>5,x)=
—3x

1 i
xe ?

5

3% 20 %1 2
2
Increasing the dimension of the input data, induction

can obtain the following description of Chi-Square criteria
distribution for an arbitrary value ¢

w (3X)%_1 &)

pxz(q, n=16x)=

1
2q9+2 8
o
2

(2g+2)
2q+2 —{g+2)=

((q+2)x) * :

(q+2)2 (©)

xe

It turns out that it can be used with analytical
relations of the form Eq. 6 in order to build a table of
quantile with confidence probability for multivariate
Chi-Square distribution
dimension q. At least, this may be done for the final
sample of 16 experiments. Presumably, that similar
analytical expressions can be obtained for other test

criteria of Pearson any
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Fig. 5: The ratio of the quantization error at the approach
of the probability distribution function and the
probability density function for the same number
of experiments

samples with the number of experiments coincides exactly
with the square of the number of columns of the
histogram. In all other cases, the Chi-Square distribution
can not be accurately described by mteger figures munber
of degrees of freedom. To describe them should be used
fractional (fractal) figures the number of degrees of
freedom.

Effect on Chi-Square power criterion quantization errors
due to the small number of experiments in a test sample:
One of the fundamental problems in statistics is that when
assessing species distributions and their parameters, 1t 1s
necessary to replace a seamless continuum of possible
values of the data selecting from a finite number of
examples. In particular, the hypothesis is verified if a
normal distribution, the final volume of the test sample
necessarily gives rise to sampling errors due to the fimte
number of experiments in a test sample. This situation is
illustrated in Fig. 5 where the two approximations are
constructed for a sample of 12 experiments. Figure Sa
gives the approximation of the probability function used
Gini criterion and Fig. 5b is given an approximation of the
probability density used Chi-Square of Pearson.

Errors oceur due to quantization mn Fig. 5, marked
with pouring. Comparing the Fig. 5a and b part, 1t 1s easy
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to verify that when approaching the density distribution
of values p(x) quantization error is approximately three
times more than the same error that occurs when
approaching the probability function P(x). This happens
due to the fact that the number of columns of the
histogram approximating the density of the distribution of
values 1s much smaller than the number of experiments in
the test sample.

As a consequence, the Chi-Square criterion of
Pearson and other statistical criterita based on a
comparison of the theoretical density histogram with
distribution of values tum out in the worst position with
other criteria by comparing the probability functions. It is
obvious that enhancing the power of statistical tests can
be achieved by smoothing the sharp edges of step
approximations of fimections shown m Fig. 5. Particularly,
can be bult digital linear filter without phase distortion
which will significantly increase the capacity of
Chi-Square criterion by increasing the number of degrees
of freedom (Akhmetov et al., 201 4a).

The data smoothing by linear averaging filter: In the
comstruction of the classical histogram the quantization 1s
performed by discovered dynamic range of the
experimental data on several intervals. Tt is usually
assumed that in each interval histogram should get some
experimental data, only in this case, the histogram will be
similar to a controlled density distribution of the values of
the investigated data.

For definiteness, use data received from generator of
64 normal random numbers. After that, calculate the
standard deviation of the received sample and quantize its
dynamic range of E(x)t4o(x) for 100 quanta. Such a choice
of dynamic range ensures that the studied small samples
will almost always fall within this dynamic range.

Next, use the first 8 samples alternately the next
12 samples and then other samples 16, 24, 32, 48, 64
created by a reference sample. Such a method of
processing use allows you to momtor the mmpact of the
volume of raw data on the reliability of the test sample to
obtain statistical estimates in testing the hypothesis of
the normal distribution of values.

Obvicusly, the introduction of substantial
redundancy quantization intervals will give rise to a large
number of pseudo histogram empty slots that shown in
Fig. 6.

As seen in Fig. 6 pseudo histogram with multiple
times reduced quantization step has blank spaces, even
when using a sample of 64 experiments, as in this case, the
number of micro intervals exceeds the number of
experiments. In all cases, the pseudo histogram in shape
is very different from the density of the normal
distribution of values.
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Fig. 6: Smoothing data by digital filter with bandwidth 11 samples by increasing monotomically with a test set of 16, 24,

32, 64 experiments

To recover the lost form of density distribution of
values examined data by smoothing data of pseudo
histogram by averaging filter, for example, a sliding
window 11 samples wide. I‘%sufégl gt%%eg},,fﬂter with zero
phase shift, provided that the av%rage tfor 11 samples of
output is placed in the center of the viewing window.
Figure 6 shows that after smoothing with this kind of filter
the shape of the normal distribution of one-dimensional
values 1s well restored. It should be noted that the number
of columns of pseudo histogram with small intervals
forn=9, k= 3 1s increased to a value:

k, =10k +2)+2 (7

However, the first 10 micromtervals will always be
zero. Zero as well turn out the last 10 microintervals. This
situation is illustrated Table 2. During smoothing the data
the first 6 microintervals and the last 6 microintervals
always stay zero. This means that the total number of
mtervals in histogram after smoothing will be described
by the following relation:

k,=10(k+2)-2x6 (8)

In particular forn =9,k =3 (Eq. 3 and 6) gives a value

of 37 that is supported by data on the right side of Table

2. That 13 mcreasing the number of columns of histogram
will be described by the following relation:
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Table 2: An example of data arising from the digital smoothing with a ten-
fold decrease in the quantization interval and the use of averaging
filter with a window of 11 samples

Hist (intn, xn)  Hist (intn, xn) Cen Cegn
1 2 1 2 1 2 1 2
- 0 - 0 - 0 - 0.000
0 0 39 1 0 0 34 0.091
1 0 40 0 1 0 35 0.364
2 0 41 0 2 0 36 0.182
3 0 42 0 3 0 37 0.182
4 0 43 0 4 0 38 0.182
5 0 44 0 5 0 39 0.364
[ 0 45 0 [ 0.001 40 0.091
7 0 46 0 7 0.001 41 0.091
8 0 47 0 8 0.091 42 0.091
9 0 48 0 9 0.091 43 0.091
10 1 49 0 10 0273 M 0.000
11 0 50 0 11 0.091 45 0.000

k, 10(k+2)-2x6

n n (9)

10D +2)-2%6
n

Precisely because of the effect of increasing the
number of columns in the smoothed listogram 1s more
accurate approximation of the original continuous density
distribution of p(x) by its discrete (step) analog of.

RESULTS AND DISCUSSION

The variety of established and studied statistical criteria:
Above mn the text basically, it was a Chi-Square of Pearson



Res. J. Applied Sci., 10 (12): 956-967, 2015

Table 3: The known statistical criteria

Criterion name and the v ear of creation Formula
. - 2
Chi-Square criterion or Pearson criterion 1900 J' {p(x) - p(x)} e
s p(x)

Criterion Cramer-Von Mises 1928

Criterion of Kolmogorov-Smimov 1933

Criterion of Smimov-Kramers Von Mises 1936

Criterion of Gini 1941

Criterion of Anderson-Darling 1952

Criterion of Cooper 1960

T{P(x)— Bx)) dx
sup |P(x)f ls(x)|
= x{tea

[{px) - Bx)] dBo)

T‘P(X)—f’(x)|dx

o

I

{Pe-Beo}
B(x)f1-P(x)}

j(ugw{P(x) - 13(){)}+j:u£“{13(x) - P(X)}

(x)

Criterion of Watson 1961 J' f’(x) —P(x)- I I:fv(x), P(X):Idf’(x)} df’(x)
Criterion of Frotsini 1978 T\P(X) — PR
Differential version of Gini criterion 2006 (Akmetov et af., 2012) T‘p(x) —pix)lx
Table 4: The values equally probable errors for different volumes of test samples, using several statistical tests

The mumnber of tests in the test sarmple
Diffemt criterion 9 16 25 36 49 o4 81 100 121
Values of equally probable errors P, = P, = Pgg
Criterion of Cooper 1960 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.500 0.500
Criterion of Gini 1941 0.5 0.497 0.482 0417 0.348 0.269 0.225 0.205 0.186
Criterion of Kolmogorov-Smimov 1933 0.46 0.44 0.345 0.315 0.239 0.232 0.215 0.201 0.177
Criterion of Frotsini 1978 0.439 0.38 0.325 0.268 0.212 0.172 0.154 0.107 0.089
Chi-Squared Pearson criterion 1900 0.42 0.32 0.28 022 0.16 0.14 0.13 012 0.090
Criterion of Cramer-Von Mises 1928 0.356 0.306 0.24 0.215 0.155 0.121 0.102 0.082 0.061
Ditferential version of Gini criterion 2006 0.281 0.202 0.162 0.101 0.07 0.05 0.03 0.02 0.010

as the most sought after and most widespread in practice.
This criterion has appeared before the others and by far
the most studied. However, in parallel with the study of
Chi-Square of Pearson for more than a centuwry
mathematical thought has also created other criteria
(Kobzar, 2006). The names of most of these criteria, the
time of their creation and calculating formula shown in
Table 3.

From Table 3 seen that the statistical criteria set up
gradually. The most recent was a differential criterion Gini
(Malygin et al., 2006) specifically for the processing of
biometric data. This criterion was the most powerful and
constructed by replacing the original criteria Gim (1941)
(Kobzar, 2006), the probability function on their
derivatives (density distribution of probabilities). Each of
the criteria of Table 3 has different power when testing the
hypothesis of normality of the distribution of values for
the altemative hypothesis of the second law of uniform
distribution of values.
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From Table 4 seen that the Chi-Square criterion is not

the best. There are criteria with significantly more power,
offer much less important error probabilities of the first
and second kinds in recognition of two statistical
hypotheses.
Statistical criteria supplementing already known
criteria: According to the literature cited in (Kobzar,
2006), the creation and study of statistical criteria
continues, starting with the creation of the first Pearson
Chi-Square test in 1900. In this case, all the currently
That i1s a
system of criteria 1s not exhaustive. Therefore, try to
the the
completeness of previous studies.

We note that the criteria Gini Frotsini and Watson
(lines 5, 8, 9, Table 3) constructed usmg modules
difference observed function of probability and

known criteria established as heuristics.

organize known criteria  and  assess
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Table 5: Statistical integral criteria, using squares of the differences of the
probability fimction

Table 6: Statistical integral criteria, using squares of the differences of the
probability finction according to new criteria

Integration over Integration over

Integration over

Integration over

T‘P(x)ff’(xﬂdx T‘P(x)ff’(x)ldf’(x)

Criterion of Gini in 1941y Criterion of Fratsini in 1941y

J\P(x) P(x)\ J Bex)
L. P{x) 2 P(x)
\P(x) P(x)\

e | @ Fey o

= [p(x) - B .
B ()1 - P(x))

[P - P(x) -

J I[ﬁ(x)—P(x)]dx

P(x)— P(x)| 5
,,,,/P(x) {1 - P(x))

[P P~

] j{P(X) }dP(x)

el {es

Criterion of Watson in 1961y

(x)

theoretical probability function corresponding to test
hypotheses. All these criteria are summarized in Table 4
and divided by type of the varable of mtegration in
different variants of weighing modules difference. As a
result, we get 7 possible options but previously
unknown, criteria for statistical hypothesis testing
(Table 5). A similar procedure of generalization was
performed to criteria:

Cramer-von Mises 1928

Smirnov, Cramer-Yon Mises 1936
Anderson-Darling 1952

The result of this synthesis 1s still unknown seven
statistical criteria previously arranged in Table 6

Another option of creation the criteria is to
use the difference observed density distribution value
as it approaches the theoretical density and
histogram-corresponding  to test hypotheses. In this
case, we get a number of new criteria which are
givenin Table 7.

A special place is occupied by statistical criteria
based on the analysis of the upper limit of divergence
probability functions and the corresponding density
distribution of values. Known and new statistical criteria
of this class are placed in the Table 8.

Thus, a variety of known statistical criteria can be
significantly enhanced with new, as yet unexplored with
mathematical constructs. At the same tine, expecting from
such studies a significant increase in power of the criteria
is not necessary. Presumably that the above options for
new, not yet investigated criteria that can significantly
mnprove the situation (slightly reduce the volume
requirements of the test sample).
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T{P(x) ~Be) ax

Criterion of Cramer-von Mises
in 1928y

T{P(x) S 76318

. B(x)

T{P(X) ~Beol

a2 (1-Px))

w [px) - Bl ]

J

2B - B
B - P -

x R dx
S [{Pexy-Pin} ax

T{P(x) ~Beo} dbix)
Criterion of Smimov-Cramer-von
Mises in 1936y
-~ 2

T{P(x): P(x)f
= P(x)
T{P(x) ~Be)
a2 (1P
f {p(x)- P(x)}

L Bx) - 1- P}

P(x)
dP(x)

dP(x)

[Bexy-P(o)} -

Hiperta

Criterion of Anderson-Darling in 1952y

Table 7: Statistical integral criteria,

density function

using the difference in the probability

Modules of difference

Squares of differences
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. pix)

1900y
[Ipex) - Blxn)fdx

T{p(x)—ﬁ(x)}? i
pix)

Chi-Squared Pearson criterion in
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[ oG- pex)fp ) dx
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Table 8: Statistical criteria
approximation emror

constructed

on registered amplitudes

Probability fimction

The probability
density fimctions
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—eaf X {+ea

Criterion of Kolmogorov-Smirnov in 1933y

P(x)-P
sup {PGo) - P+
B(x)-P
= {Bx)- P}
Criterion of Cooper in 1960y
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“Fuzzy extractor”

The quantizer

Redundant code with error correction
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Neura network
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< >

a‘ I
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Fig. 7. Scheme of two types of converters of biometrics code “fuzzy extractors™ (left panel) and a complete neural

network (right panel)

Formation of the generalized one-dimensional statistical
criterion that combines several particular criteria: The
fact that many statistical criteria can be used to combine
them into a generalized criterion. Thus, generalization can
be bult in two ways. The first way is to use so-called
“fuzzy extractors” the second way is to use high-grade
artificial neural networks. Both of these technological
areas are well explored in the development of converters
biometrics code. Block diagrams explaining operation of
these technology, generalizations of partial results are
shown n Fig. 7.

Tt should be emphasized that the “fuzzy extractors”
for biometric applications are mainly developed by the
English-speaking professionals. Work on the creation of
this technology started in the late last century and 1s
actively developed in the zero years of this century
(Monrose et al, 2001; Tuels and Sudan, 2002,
Verbutskiy et al, 2003; Dodis ef al., 2004; Yang and
Verbauwhede, 2005, Ramirez-Ruiz ef af, 2006,
Cauchie et al., 2006, Arakala et al., 2007; Lee et al., 2007
Nandalkumar ef al., 2007, Balakirsky et al, 2009). In
Russian language researches of “fuzzy extractors™ a lot
less (Chrmorra, 2011 ; Ushmaev and Kuznetsov, 2012), it 1s
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due to the fact that in Russia, in parallel with the “fuzzy
extractors” developed another direction, exploring the use
of large and very large artificial neural networks (Ivanov,
2000, 2004; Volchikhin et al., 2005, Yazov, etal., 2012) for
converting biometrics in personal cryptographic key code.

“Fuzzy extractors” are based on the fact that each
biometric parameter 1s compared with a certain
threshold (quantized), eventually vielding two possible
states “0” or “17. If a biometric image is 416 biometrics. Te
a biometric mmage of a handwritten word among the
“BioNeyroAvtograf” could be transformed nto a 416-bit
output code. Thus up to 30% discharges of BioKOD are
incorrect because of the natural instability of the biometric
mage. All the “fuzzy extractors™ are built on the fact that,
they correct errors of BioKOD with any known classical
redundant self-correcting codes (Morelos-Zaragoza,
2007). Building efficient code that can correct 30% of
errors today techmcally impossible. In this regard, “fuzzy
extractors” disguise approximately 20% of the most
volatile biometric parameters, remaining 10% are detecting
and correcting.

Relation to the subject of thlis article “fuzzy
extractors” can be used to summarize several statistical
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c*(F)

Fig. 8 Allocation of data from a normal distribution of
values (dashed line) when checking the first
hypothesis

criteria, each statistical criterion should be used twice. For
example, the classic Chi-Square criterion of Pearson (1)
can be used to estimate the closeness of the data to the
hypothesis of the normal distribution:

2z

b1

n o(xW2n

oo {—(QE((X() —))u)
k|3 (6109

X (@y=nY im—

}du

(10)
a(xW2n
{(E(x) )y’ } i

2{o(x))’

Where the limits of mtegration x;, x,,..%, 18
boundaries of uniform intervals on which builds the
histogram of frequencies of occurrence data in a test
sample consisting of n experiments.

Figure 8 shows the curves of the istogram
distribution of values of Chi-Square criterion for the data
obtained from the two generator program (Fig. 1), giving
81 count sampling (k-9).

Figure 8 shows that the comparator makes a decision
on an mput of normal sequence should give state of “17
i the range of 0-14. The switching threshold of the
comparator i state “07-14. In this case, the probability of
errors of the first and second kind are the same
P, = P, = Pi = 0.054. Applied to verification of the
hypothesis of umform distnibution law values of
Pearson criterion (1) will have Eq. 11:

b, 1Y
0k
1
k

i
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Fig. 9: Allocation of data with a normal distribution of
values (dashed line) when checking the second
hypothesis

Figure 9 shows curves of distribution of histograms
of the Chi-Square values for criterion data obtained from
the two generator program (Fig. 1) giving the reference
sample of 81 (k = 9).

Figure 9 shows that the comparator makes a decision
on detecting an input of normal sequence should give
state of “1" 1n the range of 17 and above. The switching
threshold of the comparator n the state “0"-16. In this
case, the probability of errors of the first and second kind
are the same.

The result 1s that all the statistical criteria that are in
Table 4 below criterion line Chi-Square will give the codes
with 5.4% error. If you use a self-correcting code with
100% redundancy (6% correcting errors) then editing
the error can be even for a single criterion for the code of
2 bits. That 1s the union of several statistical criteria
“fuzzy extractors” giving 4, 6, 8, 10 or more bits is
quite real.

Conducted in the Russia and Kazakhstan, studies
have shown that, at least, converters of biometry code
using “fuzzy extractors” are inferior to their main
characteristics of neural network drives. In this regard, the
transition to the neural network generalization of
several statistical criteria should allow to obtain better
results. Thus, when such generalizations need to carry
out training of artificial neural networks. For this
purpose can be used the first standardized learning
algorithm or any other of the known learming algorithms
(Wasserman, 2006).

CONCLUSION

People are able to leamn and test the quality of their
training on a small number of examples. How is this done
and which mathematics is the basis of our abilities is still
unknown. Nevertheless, we can confidently assert
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that created in the last centwry one-criterial and
one-dimensional mathematical statistics, has significant
reserves of growth of its effectiveness. It is necessary to
organize the research in the areas of research outlined
above and their combinations.

Tt interesting
thought evolves cyclically. Authoritative magazine of
mathematical statistics, published in 1901 in Oxford, not
by chance is called “Biometrika”. Biometric data at the
beginning of the last century needed
processing, at the same time took a special position and

is to note that mathematical

statistical

gave rise to many problems.

In the early 21st century, observed the first active
development of biometric technologies and the emergence
of several new biometric magazines. The main idea of this
article is that the ideas generated at the development of
biometric technologies m the 21st century are very, very
conformable with the classical postulates of mathematical
statistics. Moreover, they are likely to be useful for the
next round of development of the mathematical statistics
(multidimensional and multicriteria).
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