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Abstract: A k-step block Predictor-Corrector Methods for solving first Order Ordinary Differential Equations
(ODEs) are formulated and applied on non-stiff and mildly stiff problems using variable step size techmque. In
this method, collocation and interpolation of the power series as the approximate solution is carried out with

aim of generating the continuous scheme. The investigation of some selected theoretical properties of the

method 1s analyzed as well as determination of the region of absolute stability of the method. In addition, the
implementation of the proposed method 1s done by applying variable step size technique.
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INTRODUCTION

The numerical result for Ordinary Differential
Equations (ODEs) have great grandness in scientific and
technological computation as they were broadly used to
frameworlk in presenting the real life problems such as
motion of the projectiles or orbiting bodies, population
growth, chemical kinetics and economic growth as in
(Majid et al., 2006). According to James and Adesanya
(2014), many practical problems are modelled into first
order Ordinary Differential Equations (ODEs) while some
that are modeled mto second and third order ODEs are
computed by reducing them to a system of first order
ODEs, thereby resolving with one-step method such as
Taylor series, Euler’s and Runge-Kutta Methods.
Therefore, the subject of first order ODEs 1s vital.
This study views a computational k-step block
predictor-corrector with variable step size technique of
solving first order initial value problems of ODEs of the
form (James and Adesanya, 2014):

vy =fxy),y@=y,asx<b (1)

where, y'=f(xy) 1s given a real valued function m the
interval [a, b]c[-s, =] which is existed and bounded within
the region. We assumed that f{x, y) satisfies Lipchitz
conditions that assured the existence and uniqueness of
theresult to Eq. 1.

Majid et al. (2006), iterated that differential equations
are frequently utilized to framework or model the real life
problems and sometimes these equations do not possess

analytic solutions. Thus, a suitable computational method
1s needed to solve Eq. 1. In Ismail et al. (2009), it was
reported that other methods exist for providing solution
to Eq. 1 but such methods will only estimate the numerical
solution at one point consecutively. James and Adesanya
(2014) stated that the main disadvantage of the
Predictor-Corrector Method is the high cost of execution
as subprograms are very difficult to code due to the
separate methods needed to provide imitial values. Hence,
we desire to address tlus shortcoming by suggesting a
method that combines the features of the block method
and the Predictor-Corrector Method as well as quicker
method that can give better solution to the problem
numerically.

Researchers expressed that block methods are one of
the computational methods which have been proposed
such as Fatunla (1991), James and Adesanya (2014),
Biasa et al. (2011), Majid et al. (2006) and Majid and
Suleiman (2007). Notable advantage of block methods
is that at each step of the implementation one can get
approximate solution in more than one pomt. In addition,
the number of points relies on the formulation of the block
method as by Mehrkanoon et al. (2010). Consequently,
employing these methods can yield quicker solution to
the problem and likewise can be managed to bring out the
desired accuracy. Ismail et al. (2009) and Biasa et al.
(2011) proposed block Predictor-Corrector Methods
for solving first order ODEs using variable step size.
Basically, the block Predictor-Corrector Method was
initiated to handle stiff ODEs and contrary to James and
Adesanya (2014) which was formulated to solve non-stiff
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ODEs using fixed step size. This study is motivated
by the fact very few work have been done in
solving non-stiff and mildly stiff ODEs using k-step
block predictor-corrector employing varable step size
technique. In reality, the implementation here follows
Milne’s Method.

METHODOLOGY

We first state the theorem that demonstrates the
sufficient conditions for a unique solution to exist and
always assume that the hypotheses of tlus theorem are
satisfied.

Theorem 1: Let f (x, ¥) be continuous for all (x, y) ma
region D = {O<x<b, |y|<e}. Moreover, assume Lipschitz
continuity in y; there exists a constant L. such that for all
(x,y)inD:

f(x, y)-f(x,7) <L|yy

Then, for any ceR™ there exists a unicue solution y (x)
throughout the mterval [0, b] for the IVP (Eq. 1). This
solution 1s differentiable. The solution y depends
continuously on the initial data: if ¥ also satisfies
the ODE (but not the same initial values) then
y(x)-F(x)|< e [y (0)-F(0))].

Thus, we have solution existence, uniqueness and
contimious dependence on the data. In other words, a
well posed problems-provided that the conditions of the
theorem holds (David, 1967).

Theorem 2: The Weierstrass approximation theorem
states that a continuous function f(x) over a closed
interval [a, b] can be approximated by a polynomial P,(x),
[a, b] of degree n such that |f(x)-P (x)|<exe [a, b]. Where
>0 i3 a small quantity and n is sufficiently large
(Jain et al., 2007).

Theoretical procedure: In this study, we seek a solution
(Eq. 1) and this solution may written as:

DI @

— 1
Yusi =h i:UBifn+i

where, £, = f(x,.;, V), @ and P; are constant and assume
that e;#0, | ot |+|By|>0. Since, Eq. 2 can be multiplied by
the same constant without altering the relationship e; and
[; are arbitrary to the extent of a multiplication constant.
The arbitrarmess has been removed by assuming
that ¢, = 1. Method (Eq. 2) is explicit if j; = 0 and implicit
it B, = 0. Generally, implicit methods are solved by
iteration as by Lambert (1997).
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This study is focused on the use of Milne’s Method
of variable step technique in developing a type of l-step
block Predictor-Corrector Methods for solving first order
ODEs forthwith. The method will be formulated based on
interpolation and collocation approach using power series
as the approximate solution of the problem. Thus, power
series approximate solution can be written m the form of:

Formulation of the method: According to Lee (2000) ina
2-pont block method, the mterval [a, b] 1s divided mto
subintervals of blocks with each interval containing two
points, i.e., x, and x, , in the first block while x,., and x,,, in
the second block where solutions to Eq. 3 are to be
computed. The method will formulate two new evenly
spaced solution wvalues concurrently. Similarly, this
can be extended to a 3-pomt one block method where

the backward and forward values are the points of
interpolation and collocation as well as evaluation.

XX,

h

(3)

0 = _Eai(

Representation of r-point block method: From Fatunla
(1991) the r-point block method for Eq. 2 15 given by the
matrix finite difference equation:

(0) -y (i i i) 4
APY, =¥ AYY +hY'  BYF,, 4
_yn+l ] _fn+1 ]
Yn+2 fn+2
Y, = ,Fm=|" (forn=mr,m=0,1,..)
7Yr1+r | 7fn+r _

where, AY and BY rxr matrices. Tt is assumed that matrix
finite difference equation is normalized so that A" is an
identity matrix. The block scheme is explicit if the
coefficient matrix B” is a null matrix. This is performed
by approximating Eq. 2 using Eq. 3 with the idea of
interpolation and collocation method (it can be
described by matrix fimite difference equation stated
above).

Derivation of r-step Explicit Block Multistep (EBM):
As by James and Adesanya (2014), interpolating
Eq. 3 atx =x, and collocating Eq. 3atx =x,, fori=0(1)2
gives a system of equations which can be expressed as
AX=T.
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Solving for a’s and substituting the values of a’s
mto Eq. 3 gives a continuous scheme Linear Multistep
Method in the form:

y(X) - 21] = UaiYn+1+hEij: UB1fn+1 (5)

Evaluating Eq. 5 at points x = x,; at 1 = 1(1)3, we
obtamn the convergent k-step explicit block multistep
method as:

(23 4 5
o =y +h| =f — =f
YTJ 1 YTJ _12 n 3 n-1 12 n-Z}
(19 . 20 7
Yn+2 = yn+h7?fn_7fn—l 3fn2} (6)
[ 57 27
Yorz = Yrj+h_jfn-18fn-l+ Tfn-z:|

According to Fatunla (1991), the k-step explicit block
multistep method can be written in matrix finite difference
equation as:

APy =AYY +hBYF @

Derivation of r-implicit block multistep method:
Interpolating (Eq. 3) at x = x,, and collocating (Eq. 3)
x=x4for1 = 0(1)3 gives a system of equations which
can be expressed as AX = U (James and Adesanya,
2014).

Solving for a’s and substituting values of a’;s mto
Eq. 3 yields a continuous scheme Linear Multistep
Methed 1n the form:

Y(X) - ZE:DG1Yn+i+h21J:DB1fn+i (8)

Evaluating Eq. 8 atpomts x = x,, at 1= 1(1)], we obtain
the convergent k-step implicit block multistep method as:

(19 20 7
yn+1 =)(n-lJrh 3fn+1_3fn+2+3fn+3}
[27 9
Yoez = yn-1+h _fn+1-6fn+2+_fn+3j| (9)
| 4 4
[20 . 16 8
Yars = Yn—l+h ? n+1-fn+2+fn+3:|

Again, the k-step implicit block multistep method can
be written in matrix finite difference equation as (Fatunla,
1991 )

APy =AYy +h[BYF,] (10)
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Investigation of the basic properties of the methods
Order of the method

Definition 1: From Lambert (1977), the Linear Multistep
Method Eq. 6 and 9 and the associated difference
operator:

LIy(0: ] = 3 [oyy(x-+ih)-hfy e +ih)]

1=10

are said to be of order p if in L. [y (x); h] = Ciy(x)+Chy’
O+ AhCx) v+, C=C=...=C =0, C.+#0
Following, Jain et al. (2007) and Mohammed ef af. (2013),
we observed that the block multistep method of Eq. 6 and
9 has orderp, if C,=C,= .. =C,=0,C,,#0

Therefore, we concluded that the methods Eq. 6 and
9 have order p = 3 and error constants given by the
vectors:

And:

Convergence
Theorem 1: According to Hairer et al (1987), if the
multistep method:

v =3, oy, =h¥)_ Bf.

is convergent, then it is necessarily:

Stable
Consistent (i.e. of order 1: p(1) =0, p(1) = o(1))

Zero stability
Theorem 1 (first root condition): From Bruce (2007), the
multistep methods:

yx) =3 ay. =hY_ Bf.

1s stable if all the roots 1; of the characteristic polynomial
p(r) satisfy |r;| <1 and |r;| if then r, must be a simple root.

Definition 2: As in Hairer et al. (1987), the multistep

method:
hzj =0 Bif

n+

Y(X) - Elj =0 ainH»l

is called stable, if the generating polynomial
p(r) = det(r AP-E) satisfies the first root condition, i.e.:
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¢ The roots of p(r) lie on or within the unit circle

*  The roots on the umt circle are simple
In order to analyze the methods for zero-stability,
Eq. 6 and 9 are both normalize and written as a block

method given by the matrix fimte difference equations as
by Mohammed et af. (2013):

A(U) _ A(l)ym_1+hB(1)fm_1
A(U) _ A(l)ym,1+hB(U)fm

In addition, the zero stability 1s concerned with the
stability of the difference system in the limit as h tends to
zero. Thus as h—0, p(r) =17 (r-1)° where o is the order of
the differential equation, z is the order of the matrix A"
and E (Mohammed et al., 2013; Awari, 2013). For our
method:

1 0 0l[o o1
pmy=/rj0 1 0|0 0 1|[=0
00 1[0 01

p(r) = r'(r-1)'; hence our method is zerc stable according
to Hairer et al. (1987).

Consistency

Theorem 2: According to Bruce (2007), a Linear Multistep
Method 1s consistent 1if 1t has order greater than or equal
to 1. Thus:

zj‘lal =0
0

i=

And:

iiaﬁibl =0
i=1 i=0

Interms of the characteristic polynomial, the method
1s consistent 1f and only if p(1) = 0, p(1) = o(1).

Definition 3: The Linear Multistep Method:
] 1
2 C“"iyrui - hz Bifn+i
1=10 1=10

1s said to be consistent provided its error order p satisfies
pz1. Tt can be shown that this implies that the first and
second characteristics polynomial are fulfilled.

Pl = 0, pil) = o(l)
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Since, the block multistep methods Eq. 6 and 9 are
consistent as it has order p»1. Adopting, Hairer et al.
(1987), we can conclude the convergence of the block
multistep methods Eq. 6 and 9.

Region of absolute stability
Theorem 4 (second root condition): From Bruce, the
Linear Multistep Method:

i i
2 a1Yn+1 = hE B1fn+1
i=10 i=1

is absolutely stable if all the roots r; of the characteristic
polynomial ¢(r) = p(r)-zo(r) satisly |r;| <1.

Definition: Adesanya et al. (2013) and Lambert (1991) the
Linear Multistep Method:

i i
2a1yn+1 = hE Blfn-H
i=10 i=1n

for given h if for that h all the reots of the stability
polynomial =(r; h) =p(r)-ho(r) satisfy |r|<l,i=1,2, .,]
where h =ih and A = of/dy.

However, we adopted the boundary locus method to
determine the interval of absolute stability of the block
methods and to obtain the roots of absolute stability, we
substitute the test equation v = -Ay into the block formula
to obtain:

p(r)= det(A<“>Ym m-AVY (r)—(B(l)Fm_l(r)h}L)) =0
(11)
Substituting h = 0 inEq. 11, we obtain all the roots of
the derived equation to be equal to 1; hence, according to
Bruce (2007) defined on theorem 4, the block methods is
absolutely stable. Therefore, the boundary of the region
of absolute stability 1s given by:

- p(r) i
hin)=—F= 77— (12)
o) 19 20, 7
3 3 3
Let, r = ® = cosB+i sinf, therefore Eq. 1 becomes:
= co0s20-1
AT (13)

?cos 8—E 00526+%cos36

Evaluating Eq. 13 at 30° within [0°, 180°] which
gives the stability interval to be [-1.075747112, 0] after
evaluation at interval of h(&). The stability interval is
shown in Fig. 1.
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y

Fig. 1. The region of absolute stability of the block
method

Implementation of the variable step-size method:
Adopting, Faires and Burden (2012):

Predictor-corrector  techniques always generate
two approximations at each step, so they are natural
candidates for error-control adaptation

To demonstrate the error-control procedure, a
variable step-size Predictor-Corrector Methods
using  3-step  Adams-Bashforth Method as
predictor and the corrector method using the 2-step
Adams-Moulton Method as corrector is constructed

To proceed further, we must make the assumption
that for small values of h:

y* () = ¥R

If we subtract the (block predictor) local truncation
error estimate from the (block corrector) local truncation
error estimate and further simplification, we arrive at the
approximation to the Adams-Moulton local truncation as:

= d<¢ a4

EEH: ygﬂ'yfwl
Equation 14 15 called Milne’s estimate. As in Zarina ef al.

(2007), varying the step size 1s crucial for the effective
performance of a discretization method. Step size
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adjustment for r-point block multistep method using
variable step has been stated earlier. On the given step,
the user will provide an error tolerance limit. In the block
multistep, variable step-size strategy codes, the block
solutions are accepted if the local truncation error, LTE is
less than the tolerance limit. The LTE is obtained by
taking Eq. 14forn=1,2, .., j where y°_ andy®, represents
the predicted and corrected approximation given by the
3-step Adams-Bashforth and 2-step Adams-Moulton
Methods while & is called the convergence test and € 1s
the tolerance limit. If the error estimate is greater than the
accepted tolerance limit, the value of v, is rejected, the
step is repeated with halving the current step size or
otherwise, the step is multiply by 2. The error controls for
the code was at the first point m the block because in
general 1t had given us better results according to the new
method. The error estimate (gf, ) is used to decide
finally whether to accept the results of the current
step or to redo the step with a smaller step size.
According to Uri and Linda, the step 1s accepted based on
test displayed previously. Furthermore, Eq. 14 guarantees
the convergence of the method during the test evaluation.

NUMERICAL EXPERIMENTS

The performance of the block Predictor-Corrector
Method was carried out on non-stiff and mildly stiff
problems. For problem 1 and 2 the following tolerances
1074 107, 107% 107% 107" and 107" was used to
compare the performance of the newly proposed method
with other existing methods as by James and Adesanya
(2014) (Table 1 and 2).

Table 1: Numerical results by James and Adesanya (2014) and kBPC for
solving problem 1

X Maximum errors Tolerance levels  Maximum errors
0.1 6.82121 (-13) 107 1.42882 (-4)
02 2.04636 (-12) - -

03 2.27373 (-13) 1078 8.25471 (-7)
0.4 1.13686 (-12) - -

0.5 4.54747 (-13) 10°¢ 8.63637 (-9)
0.6 2.27373 (-13) - -

0.7 3.18323 (-12) 10710 9.44962 (-11)
0.8 4.54747 (-13) - -

0.9 9.09494 (-12) 10712 1.11022 (-16)
1.0 2.04636 (-12) - -

Table 2: Numerical results by Mehrkanoon et of. (2012) and kBPC for
solving problem 2

TOL MTH MAXE

1072 3PG 1.0x1074
KBPC 1.32359=107°

1074 3PG 9.57=1077
KBPC 4.29533%107°

107¢ 3PG 6.64x107°
KBPC 6.81677=107%4

107% 3PG 7.46x1071
KBPC 3.33067=107%

10710 3PG 5.64%10713
KBPC 2.22045%107%
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Tested problems
Problem 1: The first problem to be discussed 1s
extracted from James and Adesanya (2014). Moreover,
a note on the construction of constant order predictor
corrector algorithm for the solution of first order ODEs
was developed and implemented using fixed step size. The
newly proposed method is formulated to solve non-stiff
and mildly stiff odes using variable step size technique.
The SIR Model is an epidemiological model that
computes the theoretical numbers of people mfected with
a contagious illness in a closed population over time. The
name of this class of models derives from the fact they
mvolves coupled equations relation the number of
Susceptible people S(t), number of people Infected 1(t) and
the number of people who have Recovered R(t). Scholars
defines this model as good and simple for many infectious
diseases including measles, malaria Ebola and so on. The
SIR Model 1s described by the three coupled equations:

ds _
=SS
% = 1) + IS
R

a = -uR -1

where, 1, v and P are positive parameters. Define y to be:

y=S+I+R

Combimng the equations by adding all together, the
three coupled equations above becomes:

dy
===
o p(1l-y)

Taking p = 0.5 and attaching an initial condition
v(0) = 0.5 (for a closed population), we get:

% = 0.5(1-y), y(0)=0.5

whose exact solution 1s:
y(t)=1-0.5¢""

Problem 2: Problem 2 was extracted from Ming-Gong. The
3-point implicit block multistep method for the solution of
first order odes was designed and implemented using
variable step size technique. Moreover, this scheme
belong to the Backward Differentiation Formula solely
an implicit scheme for solving stiff odes. The newly
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proposed method belongs to the family of Adams and
was created to solve non-stiff and mildly stiff odes.
Negative exponential problem (mildly stiff):

y' = 0.5, y(0) = L [a, b]=[0, 20]

The exact solution is given by y(x) = ¢ The
following notational systems are used in the tables:

TOL: Tolerance

MTD: Method employed

MAXE: Magnitude of the Maximum error of the
computed solution

KBPC: K-step Block Predictor-Corrector Method

The following notational systems are used in the
tables:

TOL: Tolerance

MTD: Method employed

MAXE: Magnitude of the Maximum error of the
computed solution

CONCLUSION

From Table 1 (James and Adesanya, 2014) was
implemented using fixed step size which does not allow
for step size changes, error control and minimization.
Hence, the newly proposed method is preferable with the
above mentioned. Again from Table 2 (Mehrkanoon et al.,
2012) was also executed using variable step size which
belongs to the family of bacloward differentiation formula
specifically designed to solve stiff ODEs while kBPC 1s
formulated as well to compute non-stiff and mildly stiff
ODEs. Moreover, problem solved is based on mildly stiff
ODEs. This gives a better result at all tested tolerance
levels.
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