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Study and Analysis of Advanced Control Algorithms on a FOPDT Model
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Abstract: This study illustrates the simulation of a simple First Order plus Delay Time (FOPDT) process model
using Advanced Control algorithms. Specifically, these advanced algorithms are the IMC-based PTD controller,
the Model Predictive Controller (MPC) and the Proportional-Integral-Plus controller (PIP) and their performance
1s compared with the conventional Proportional-Integral-Derivative (PID) algorithm. The simulations took place

using the Matlab Software.
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INTRODUCTION

The popular control algorithm used in industry is the
PID controller which has been implemented successfully
in various techmeal fields. However, since the evolution
of computers and mainly during the 1980s a number of
modern and advanced control algorithms have been also
developed and applied in a wide range of industrial and
chemical applications. Some of them are the Internal
Model-based PID controller, the Model Predictive
controller and the Proportional-Integral-Plus controller.
The common characteristic of the above algorithms is the
presence 1n the controller structure an estimation of the
process” model. The purpose of this study is to apply
these advanced algorithms to a linear First Order Plus
Delay Time (FOPDT) process model and compare their
step response with the conventional PID controller.

Initially, it will be presented a brief discussion over
the theoretical desigmng aspects of each applied
algorithm. The main section of the study 1s devoted to the
simulation results in terms of type 1 servomechanism
performance of a simple FOPDT process using the above
control algorithms in various practical scenarios.

Proportional-integral-derivative  controller:  The
Proportional-Tntegral-Derivative (PID) Control algorithm
is the most common feedback controller in industrial
processes. It has been successfully implemented for over
50 years as it provides satisfactory robust performance
despite the varied dynamic characteristics of a process
plant (Willis, 1999).

The proper tuning of the PID controller aimns a desired
behavior and performance for the controlled system and
refers to the proper definition of the parameters which
characterize each term. Over the past, it has been
proposed several tuning methods but the most popular
(due to its simplicity) 15 the Ziegler-Nichols Tuming
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Table 1: Ziegler-Nichols PID tuning computation

Controller K T Tn

P K./2 - -

PI K22 P./1.2 -
PID KJ/L7 P2 P/

Method. This tuning method is based on the computation
of a process’s critical characteristics, 1.e., critical gain K,
and critical period P (Ziegler et al., 1942). Table 1
summarizes the computation of PID parameters
{Astrom and Hagglund, 1995).

IMC-based PID controller: The Internal Model Control
(IMC) algorithm 1s based on the fact that an accurate
model of the process can lead to the design of a robust
controller both in terms of stability and performance
{Coughanour, 1991). The basic IMC structure 13 shown in
Fig. 1 and the controller representation for a step
perturbation iz described by Eq. 1:

G;(s)

G,(s)= (1)
2 (8 G
Where:
G (8) = The inverse minimum phase part of the
process model
G:(s) = A nthorder low pass filter 1/(As+1 )

The filter’s order is selected so that Gys) is
semi-proper and A 15 a tuning parameter that affects the
speed of the closed loop system and its robustness
(Morari and Zafiriou, 1989).

However, there is equivalence between the classical
feedback and the IMC control structure allowing the
transformation of an IMC controller to the form of the

well-known PID algorithm:

G,(s)

SR D — (2)
1-G,(8)G(3)

G.(s)
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Fig. 1: IMC control structure

Table 2: IMC-based PID tuning parameters of a FOPDT process

Controller K K, T, Ty A0
IMC-based PI without pade T ) - =1.7
A 2
IMC-based PI 2146 . - =>1.7
23 2
IMC-based PID 2t+8 . % 0.8
Zh+6 2 2t+6

The resulted controller 1s called IMC-based PID
controller and has the usual PTD form Eq. 3:

_ 1 3
Gg(s)Kp[nTDHTS} (3)

1

IMC-based PID tuning advantage is the estimation of
a single parameter A instead of two (concerning the
IMC-based PI controller) or three (concerning the
IMC-based PID controller). The PID parameters are then
computed based on that parameter (Coughanour, 1991).
Though for the case of a FOPDT (Eq. 4) process model,
the delay tume should be approximated first by a
zero-order Pade (usually) approximation (Bequette, 2003).

However, the IMC-based PID Tuning Method

can be summarized according tothe Table 2
(Morari and Zafiriou, 1989):
Gls)= e e (@)

s+l

Model predictive controller: MPC refers to a class of
Advanced Control algorithms that compute a sequence of
manipulated variables i order to optimize the future
behavior of the controlled process. Initially, it has been
developed to accomplish the specialized control needs in
power plants and oil refineries. However, because its
ability to handle easily constraints and MIMO systems
with transport lag, it can be used m various industrial
fields (Naeem, 2003).
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Fig. 2: MPC block diagram
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Fig. 3: Receding horizon strategy

The first Predictive Control algorithm 1s referred to
the publication of Richalet et al. (1978) titled “Model
Predictive Heuristic Control”. However, in 1979, Cutler
and Ramaker by Shell™ developed their own MPC
algorithm named Dynamic Matrix Control-DMC
(Cutler, 1983). Since then, a great variety of algorithms
based on the MPC principle has been also developed.
Their main difference is focused on the use of various
plant models which 1s an important element of the
computation of the predictive algorithm (i.e., step model,
impulse model, state-space models, etc.). Figure 2 shows
a typical MPC block diagram.

The main idea of the Predictive Control theory 1s
derived from the exploitation of an internal model of the
actual plant which is used to predict the future behavior
of the control system over a fimite time period called
prediction horizon p (Fig. 3). This basic control strategy
of predictive control is referred to as receding horizon
strategy (Maciejowski, 2001).

Its main purpose 1s the calculation of a controlled
output sequence y(k) that tracks optimally a reference
trajectory ¥'(k) during m present and future control moves
(m<p). Though m control moves are calculated at each
sampled step only the first Adtk) = (U'(k)-ulk)) is

implemented. At the next sampling interval, new values of



Res. J. Applied Sci., 9 (6): 376-381, 2014

the measured output are obtained Then, the control
horizon 1s shifted forward by one step and the above
computations are repeated over the prediction horizon.
In order to calculate the optimal controlled output
sequence, it is used a cost function of the following form
(Morari and Ricker, 1998):

) 2
) r;’[y(k+1\k)—yu(k+1)]H +
=1
w 2
|
1=

Iy Algk+1-1])|
1

)

where, T” and T, are weighting matrices used to penalize
particular components of output and input signals,
respectively at certain future intervals. The solution of the
LOR control problem 1s resulted to a feedback
proportional controller estimated as the gain matrix k
solution of the well-known Riccati equation over the
prediction horizon:

uik) = — kx, (6)

PIP controller: PIP controller comprises a part of the True
Digital Control (TDC) Method and can be considered as
a logical extension to the conventional PI/PID controller
but with mherent model predictive control action. The
power of the PTP design derives from its exploitation
of a specialized Non-Mimmal State Space (NMSS)
representation of a linear and discrete system referred as
NMSS/PPIP formulation (Hesketh, 1982; Young et al,
1987).

The fact that the PIP is considered as a logical
extension of the conventional PI/PID controlled can be
appeared better when the process’s transfer function is
second order of higher or includes transport lag greater
than one sampling interval. Then PIP controller includes
also a dynamic feedback and input compensation
mtroduced “automatically” by the specialized NMSS
formulation of the control problem (Taylor et al., 2003)
that in general has a numerous advantages against other
advanced control structures (Taylor et al., 2000). Any
linear discrete time and determmustic SISO ARIMAX
Model can be represented by the following specialized
NMSS equations:

xk)=Fxk-D+quik-D+dy, (k) (7)

ylk)=hx(k) (8)

where, the vectors F, q, d and h comprise the parameters
of the Eq. 8 (Young et al., 1987).
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In the specialised NMSS/PTP case, the non-minimum
n+m state vector x(k) consists not only in terms of the
present and past sampled value of the output variable y(k)
and the past sampled values of the mput variable u(k) (as
it happens in the conventional NMSS design) but also of
the mtegral of error state vector z(k) mtroduced to ensure
type 1 servomechanism performance, i.e.:

x(k) = y(k),ytk ~1), .,y(k—n +1),

- )]
uk—1),..., u(k—m+1), z(k) |

The integral of error state vector z(k) defines the
difference between the reference input (setpoint) v,(k) and
the sampled output y(k):

2(k) = 2(k-D+{y, (K)-y()} (10)

The control law associated with the NMSS Model
results to the usual State-Variable Feedback (SVF) form:

u(k)=—kx(k) (1)

where, k is the ntm SVF gain vector. The control gain
vector may be easily calculated by means of a standard
L.Q cost function:

T= %Z {x(i)TQx(i) + Ruz(i)} (12)
1=0

Where:

Q = A nt+mx*n+m weighting matrix

R = A scalar input u(i) weight

It 1s worth noting that because of the special
structure of the state vector x(k), the weighting matrix Q 1s
defined by its diagonal elements which are directly
associated with the measured variables and integral of
error state vector. For example, the diagonal matrix can be
defined 1 the following default form:

Q=disg|q--qy yi-Bovmes Goom (13)
—_——

ay=1/n qu=1/m qe

The SVF gains are obtained by the steady-state
solution of the well-known discrete time matrix Riccati
equation (Astrom and Wittenmark, 1984) given the NMSS
System description (F and q vectors) and the weighting
matrices (Q and R):

k:[fﬂ f1 £ - 7k1] (1 4)

n-1
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Fig. 4: PIP feedback block diagram

In a conventional feedback structure, the SVF
controller can be implemented as shown in Fig. 4 where it
becomes clear how the PTP can be considered as a logical
extension of the conventional PI/PID algorithm, enhanced
by a higher-order forward path and input/output feedback

compensators GeR[z™, m-1] and FeR[z, n-1],
respectively (Taylor et al., 2003):
F(z)=f, +fz'+. . +f _z " (15)
Gz "=1+gz"'+. +g ,z™" (16)

PROBLEM FORMULATION

In order to asses the practical utility of the above
described advanced control algorithms, a series of
umnplementation simulations have been conducted on a
simple FOPDT process. For comparison purposes, a
conventional PID controller is also designed using the
Ziegler-Nichols Method.

The FOPDT process model is described by Eq. 17 and
initially is assumed absence of plant model mismatch,
mputs constraints or measwred disturbances. The model
selection 1s based on the fact that a FOPDT Model
represents any typical SISO chemical process. The
simulation took place using the Matlab/Simulink™
Software and the results are discussed m terms of type 1
servomechamsm performance:

e—U.Ss

GE)=—— A7)

s+1

The next simulation scenario includes constraints in

the input manipulated variables:
-2=zu{t)=2 (18)
In the final simulation scenario a simple disturbance
model described by Eq. 18 is also mmplemented in

order to study the capability of each controller in
disturbance rejection:
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Gd(s):%e

—0.1s

(19)

The critical characteristics for the estimation of PID
parameters (Table 1) are K, = 5.64 and P, = 1.083. The
IMC-based PID parameters are estimated according to
Table 2 selecting A = 0.5 and n = 1. The calculation of
MPC gain matrix includes the following parameters; input
weight I, output weight I}, control horizon m = 10 and
wnfinity prediction horizon. Whether the absence of
measured distwrbances or not the ‘default” L.Q weight
matrices for the PIP controller are:

Qu = [I 025 025 025 1

R =0.25 (absence of measured disturbances) and:

Que = [1 025 025 025 1 0 0]

R = 0.25 (presence of measured disturbances).
PROBLEM SOLUTION

With no disturbances and mput constraints, the
output response (Fig. 5) for the Advanced Control
algorithms yields satisfactory step behavior with good set
point tracking and smooth steady state approach.
However, the response of the conventional PID seems to
be rather disappointing as it yields a large overshoot.
Figure 6 demonstrates theirr control action response.
Mainly concerning MPC and PID algorithms, the maitial
sharp increase of their control action signal may not be
acceptable during a practical realization of the controller
in an actual industrial plant.

Figure 7 shows the output response after the
introduction of input constraints defined by Eq. 17.
According to the results, both PIP and IMC-based PID
controllers were unaffected by the input constraints as
their constramed control action response has been within
the constrained limits. Although, the response of the
conventional PID  controller retained its large
overshoot, the introduction of input constraints has
optimized its smoothness. Finally, MPC maintained its
satisfactory performance, although the fact that its
mamipulated variable has been constrained the most
(Fig. 8).

Figure 9 demonstrates the output responses of the
process during the introduction of measured disturbances
defined by Eq. 18 According to the results, MPC
controller yields the most optimal response whule PIP
controller sustamns its performance. On the contrary
IMC-based PID as well as the conventional PID yield a
rather large overshoot.
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Fig. 5: Unconstrained output step response
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Fig. 6: Unconstrained control action step response
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Fig. 7: Output step response with input constraints

Table 3 shows an approximate numerical evaluation
of the control algorithms for each scenario. The
evaluation parameters are the Overshoot (O), Rise Time
(RT), Settling Time (ST), Integral Square Error (ISE),
Robust stability (RS) and Robust Performance (RP).
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Fig. 8: Constramed control action step response
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Fig. 9: Output step response with measured disturbances

Table 3: Numerical evaluation of control algorithms

Controllers 0 (%) RT ST ISE
Scenario 1

PID 49.80 0.5300 1.9300 0.49
IMC-based PID 1.76 1.1800 1.3800 0.51
MPC 0.00 0.0021 0.0021 7
PIP 0.00 1.2500 1.4500 0.65
Scenario 2

PID 50.00 0.9700 2.6600 0.67
TMC-based PID 2.00 1.2400 1.4400 0.52
MPC 0.00 0.8500 0.9500 0.97
PIP 0.00 1.2500 1.4500 0.65
Scenario 3

PID 62.95 0.5300 1.9300 0.48
TMC-based PID 16.23 0.7800 3.3800 0.40
MPC 0.00 0.0021 0.0021 0.02
PIP 7.38 0.9500 1.9500 0.50

CONCLUSION

This study discusses the effect of three Advanced
Control algorithms on a FOPDT process model in terms of
type 1 servomechanism performance. These algorithms



Res. J. Applied Sci., 9 (6): 376-381, 2014

are the IMC-based PID controller, the model
predictive controller and the PIP controller. After their
umplementation i the FOPDT process their step response
was simulated using the Matlab/Simulink™ Software and
compared with the conventional PID controller in
various practical scenarios. Such scenarios include
the implementation of input constraints or measured
disturbances.

According to the siumulations results, all the
Advanced Control algorithms perform satisfactory step
behavior with good set point tracking and smooth steady
state approach. They also sustain their robustness and
performance during the introduction of input constraints
or measured disturbances. Surprisingly, the step response
of the conventional PID controller was not as optimal as
1t has been expected as its overshoot exceeds any typical
specification limits.
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