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Abstract: Researchers establish the equation of the curve described by the wave vector of the extraordinary
wave on the second surface of the plane parallel piece cut from a uniaxial crystal with optical axis’s random
orientation in relation to the normal to the piece, under the ray’s rotation around the normal (this ray descents
at any constant angle onto the first surface). This helps to obtain and analyze, without any simplications, used
in known works, the equation describing the form of 1sochromes of any order n conoscopic patterns of umaxial
crystals. The calculated 1sochromes patterns for some angles between axis and normal which have the most
obvious difference from the ones which were prognosticated before are verified experimentally on paratellurite

crystal with special orientations of two pairs of faces.
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INTRODUCTION

Over the last years, we observe growth of interest in
an old and seemingly elaborate method of research of
anisotropic  crystals in  converging and divergent
linearly polarized light a conoscopy method. Some works
(Wen et al., 1995; Mamedov et al., 2003; Rudoi et al ,
2003) cover even such delicate aspects of the method as
optical activity’s mfluence on the type of 1sochromes of
uniaxial and biaxial crystals. The method is practically
mnteresting because of new possibilities of its using in
studying of optical effects m nanosized structures
(Satto ef al., 2000) n mineralogy (Pumn and Shtukenberg,
2005) 1n holography (Sirat and Psaltis, 1985). Conoscopy
1s used for defining of category of crystal (low or medium)
and its optical sign (Stoiber and Morse, 1972). In cases
when the perfect crystal structure is known, the method
can be used for checking of accuracy of orientation of
faces which are orthogonal in relation to optical axis of an
uniaxial crystal or bisector of an angle between the biaxial
ones’ axes (Bom and Wolf, 1985, Moskalev et al,
2002). The method has the technical sigmficance
for polarization compensators and polarization
mterferometers (Moskalev er al, 2002). Data on
angles of anomalous biaxiality, obtained with the help of
conoscopy, allow to estunate mechanical stresses m an

uniaxial crystal which lead to distortion of its optical
indicatrix (Swotin and Shaskolskaya, 1975). The most
important practical meaning of the Conoscopy Method
lies in the possibility to find optical inhomogeneities in
crystals via analysis of forms of isochromes lines of equal
path difference between ordinary and extraordinary rays
in conoscopic patterns (Punin and Shtukenberg, 2005,
Kolesnikov et al., 2013a). Isogyres in the form of dark
areas bear less information, obstruct observation of
isochromes and there are special methods for elimination
of them (Stoiber and Morse, 1972). Anomalous biaxaality
and also all 1sochromes lines’ departure from theoretical
form speak for large optical anomalies to a scale of the
whole crystal. Fractures on an 1sochrome or series of such
fractures which correspond
distortions in the order of wave length deciles are well

to minor wavefront
observed in conoscopic patterns and allow to find optical
anomalies and estimate the number of variations of
refraction indices located in the crystal’s minute volumes.
In its turn, analysis of optical anomalies found with the
help of the conoscopy method allows to correct the
crystal growimng technology to obtain the material’s
maximum homogeneity. Thus, conoscopy 1s a quite up-to-
date, developing, multifunctional and delicate technique
of diagnosing,
monocrystals used m optics.

defectoscopy and metrology of
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For correct interpretation of conoscopic patterns
form, we mneed a precise physical theory and
corresponding precise mathematical tools allowing to
estimate form of 1sochromes of any order for any crystal
with known structure, sizes, principal values of refraction
indices and orientation of faces which are parallel with
each other in relation to axis (axes). Meanwhile, analysis
of kmown works connected with the method theory shows
that even in case of unmiaxial crystals scientists still use
fundamental equations established earlier with certain
simplications (Born and Wolf, 1985). When trying to
describe uniaxial crystals 1sochromes forms i more detail,
they used further simplications (Rudoi et al, 2003
Moskalev et al, 2002, Sirotin and Shaskolskaya,
1975, Shuvalov et al, 1981, Bajor et al., 1998
Konstantinova et al., 1995, 2003) and that gave
isochromes forms which did not correspond to conscopic
patterns which were observed in reality in course of
studying of crystals of paratellurite and lithium niobate, a
high optical and structural quality of which had been
ascertained in other ways.

The purposes of this research were to establish a
precise (without any simplications) equation for
1sochromes of any order in plane of observation of
umaxial crystal conoscopic patterns under random
orientation of a normal to piece’s surfaces in relation to
optical axis and also to verify obtained correlations
experimentally.

ANALYSIS OF APPROXTMATE METHODS OF
ISOCHROMES FORMS ESTIMATION

Tt seems that the first detailed and the most precise
(among the approximate ones) mathematical description of
forms of isochromes in uniaxial crystal conoscopic
patterns was given by Bom and Wolf (1985) mn research.
Calculation of phase difference between wave fronts of
ordinary and extraordinary rays is illustrated by Born and
Wolf (1985) by the figure, given below with only some
designations changed (Fig. 1). Here SA, AB,, AB, are
wave normals to an incident and two refracted waves at
the point A, Cris a crystal.

Equations below have the following designations:
A 1s a wave length in the first medium (air), 4,=A/m,,
A, = A, are lengths of both refracted waves, «, B, and B,
are correspondingly an angle of incidence and two angles
of refraction, 0 is the average value of B, and B, L 1s a
lens (or a projection system), F 1s a point in the focal plane
of a lens (or a projection system) where ordinary and
extraordinary waves interfere. Rays come out of a crystal
being parallel with each other and a wave of the normal to
an incident wave with phase difference:

B
8\

B“\_

| BA\B\B
-

Cr h

Fig. 1: To estimation of phase difference gained by two
waves passed through a parallel-sided plate made
from a uniaxial positive crystal (Born and Wolf,

1985)
5 a] AR B.C_AB, )
A, AA
Where:
AB = L AB = 3 and
cos P, cos 3, (2)

B.C = B, B, sinat = hsinatgP, -tgp.)

After substitution of Eq. 2 into 1 and applying the
refraction law (sina/A = sinf/A, = sinP,/4, = sina/A) by
Born and Wolf (1985), we obtain an absolutely precise
expression for phase difference:

&= Zikh(nE cos P, cosfP, ) 3

In this expression, we know (h, A, n,) or we can easily
calculate (cos B;) all values except for refraction angle B,
and extraordinary refraction index corresponding to it.
Moreover, no known work gives precise expressions for
n, depending on the angle of incidence of ¢ for the set
angle 1 between the normal to surface of the crystal or its
optical axis. Frenel equation allows to easily calculate
refraction index n, of the extraordinary wave already
spreading in the known direction in the crystal. But in the
case this direction itself should be defined. By Born and
Wolf (1985) at first, we apply approximation lying in the
fact that we introduce some average angle 6 between
refraction angles B, and B,. The point B in Fig. 1 shows
the exit of such average normal of wave fronts on the
crystal’s lower surface. Altogether, Borm and Wolf (1985)
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uses only two approximations, therefore conclusions
presented in this work are the most real ones and have no
expressly erratic provisions. All other works comected
with the conoscopy of umaxial (let alone biaxial)
crystals (Wen et al, 1995, Mamedov et al, 2003;
Rudoi et aql., 2003; Moskalev et af., 2002; Sirotin and
Shaskolskaya, 1975, Shuvalov et al, 1981,
Konstantinova et al, 1995, 2003) except for
Kolesnikov et al. (2013a) and Bajor et al. (1998) use
additional approximations and as a result there are
conclusions distorting true form of 1sochromes and
evenn making possible gross errors in the course of
estimating of optical homogeneity, optical mndicatrix,
values of mechanical stresses and their distribution in
crystals.

By Bormn and Wolf (1985) Eq. 3 1s replaced by an
approximate expression on the basis of insignificance of
difference n,-n, in comparison with n, and n, and after that
the phase difference 0 is equal to:

_ 2nh 4
677\.0058&1E ) W
where, 0 is an average value of angles p, and B, and value
h/cosB 1s an average path of two waves m a crystal and
after multiplying by (n,-n,) it is a corresponding optical
path difference.

All isochromes by Born and Wolf (1985) gain,
creating around the point A of the surface of a constant
phase difference d(h, ) = const wherefore, a polar radius
is used:

p=aAB= (5)

and also an approximate angle © which AB generates with
bearing of the optical axis. In an uniaxial crystal refraction
indices corresponding to the direction of the wave normal
generating the angle v with the optical axis are connected,
according to Born and Wolf (1985), via formula:

12— 12: 12- 12 gin® v (6)
n, n N, N

€ €

where, N; = n, and N, are principal values of refraction
indices of ordinary and extraordinary waves. Here by Max
(1985), we make the second approximation. Due to
msignificance of difference of refraction mdices n, and n,
in comparison with their values, Eq. 6 is replaced by an
approximate one:

n,-N,= (N_-N, )sin’v (7

After substitution of Eq. 5 into 4, taking into account
(Eq. 6), we obtain the formula for phase difference p:

_ Zmp

. 27mh .
8= T(Ne'Nu)sz v= @(I\Ie-l\lu)s‘.m2 v (8

which includes now two approximate values 6 and v
refraction angle and angle between the optical axis and
the wave fronts average normal correspondingly. Then,
we write the equation for the constant phase difference
surface:

psin’ v = o(c = const) @

Then, we introduce a Cartesian coordinate system
with axis z, directed along the optical axis and according
to Eq. 9, constant phase difference surfaces are estimated
with the equation:

(' +y") =c’(x"+y +27) (10)

Then by born and Wolf (1985), it is noted that all
1sochromes can be defmed using sections of the surface
(Eq. 10) as planes located at different distances h from the
coordinates origin.  Analysis of the corresponding
intersectional curves form by Bom and Wolf (1985) 15 of
a qualitative character. It contains a correct statement,
according to which mn case of coincidence of the normal
to faces with the optical axis isochromes take the form of
circles. Less precise conclusions lie in that fact that if the
normal to faces generates a slight angle with the optical
axis 1sochromes compress and evolve mto ellipses and if
this normal generates a wide angle with the optical axis
isochromes verge towards hyperbolas. The formula for
determmed with two

approximations 1s a surface of the fourth order and in case

the equal phases surface,
of planes intersecting it, curves in general cannot be
curves of the second order (Shuvalov et al., 1981)
includes the same approximate expression for the phase
difference & between ordinary and extraordinary waves
as (Born and Wolf, 1985) and then researchers made two
more approximations. Due to littleness of refraction
angles it was taken that 1/cos®=1+/2sin’0. The next
approximation lay in decomposition of a square root into
series in the expression for polar radius pzm ;
z = h after introduction of coordinates system xyz in which
plane xy 1s a plane of observing of a conoscopic pattern.
As aresult of specified approximations by Shuvalov ef al.
(1981), we see the expression for phase difference:
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8= %(NE—NU ){X2 (cos2 qﬂr%sinz q}} +y? (Coszq}+ %Sin2 \p]-hxsinzqﬁhz sin® \p} (11)

where, | is an angle between the optical axis
and the normal to the crystal. The surface of equal phases
0 = const in the work Shuvalov et al. (1981) as distinct
from (Max, 1985) is a surface of not the fouth order
but of the second one. Analysis of Eq. 10 shows that
under 1 = 0 isochromes are as in the (Born and Wolf,
1985), circles. Under tgy<«2 isochromes should be
ellipses and under tgy>+«2 they are hyperbolas. The
matter of changing the form of isochromes depending on
their order, i.e., when changing & for conoscopic pattern
of one and the same crystal neither by Shuvalov et al.
(1981) nor by Bom and Wolf (1985) was not
considered.

Methods of estimation of isochromes forms used
in researches (Wen et al., 1995; Mamedov et al., 2003,
Rudoi et aql., 2003; Moskalev et af., 2002; Sirotin and
Shaskolskaya, 1975, Konstantinova et al., 1995) do not
differ from the method described by Shuvalov et al.
(1981), neither in formulas (with an accuracy to
designations) nor m conclusions. Closing the review of
publications which give estimations of forms of
1sochromes in unmiaxial crystals conoscopic patterns, we
can draw the following conclusions:

¢ There are no precise formulas for refraction angle of
extraordinary wave [, and its refraction index n, in
case of obtaining expression for path difference A
between extraordinary and ordinary waves in any
known work

¢« Instead of them
relationships for average refraction angle and

scientists use approximate
average angle between the optical axis and refracted
waves

* Depending on amount and character of

approximations 1n the most mathematically exact

work (Born and Wolf, 1985) equal phases surfaces

are the fourth order surfaces, the rest of the works

which mention them specify them as the second

order surfaces. Nonetheless, all works mention
only curves of the second order (circles, ellipses and
hyperbolas) as possible isochromes as lines of
intersection of equal phases’ surfaces by planes

* No work contains analysis of change of forms of
1sochromes depending on their order in a crystal’s

COMoscopic pattern

¢+ No work represents such experimentally obtained
conoscoplc patterns which support 1sochromes
forms which are theoretically prognosticated i this
work. There are only two, the most trivial cases which
are exceptions: an optical axis is perpendicular to
crystal’s faces; an optical axis lies in a plane which 1s
parallel to crystal’s faces

DERIVATION OF A PRECISE EQUATION
FOR UNIAXTAL CRYSTAL’S ISOCHROMES

Let us write Frenel equation for uniaxial crystal in the
classic form (Sirotin and Shaskolskaya, 1975):

(n’ N {n’ (] 4] )-NgNE) = 0 (12)
Where:
n = A refraction index

k, = Directional cosines of a wave vector of a refracted
wave 1n a crystallographic coordinates system

Figure 2 shows crystallographic coordinates system
xyz in a uniaxial crystal with optical axis z which generates
angle =0 with normal vector @ which are axis of cone of
rays descending on to the crystal at the angle «. Behind
the crystal we see a lens (projection of lens L) with focal
distance f at which we see observation plane (screen) with
coordinates system X'O'Y" and point A'(X', Y') for which
we calculate path difference between ordmary and
extraordinary waves. Also, the figure shows wave vector
of incident wave 1, wave vector of extraordinary wave,
k, X, Y coordinates of point A of departure of
extraordmmary wave on the crystal’s second surface in the
transformed coordinates system XY7Z.

Due to the fact that our interest is in the extraordinary
wave direction, let us take n as the refraction mdex of
extraordinary wave n = n, = sing/sinP and in (Eq. 12) the
expression in curly brackets = 0. Then, using forms
sin‘e = 1-cos’e; sin’P, = 1-cosP,, we obtain:

NSNS(1£OSZBE):(1£OSZQ)[NS(k12+k§)+Nzk§} (13)

and after that expressing cos’e and cos®P, via scalar
products of vectors m1 and mk correspondingly, we
obtain Frenel equation i the following form:

1-(m k +m,k, +m.k, )’ _ ki+k: +ﬁ (14)
1-(m111+m212+m313)2 Ni NE
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Ray cone
Axis (normal )

Fig. 2. Scheme explaining mutual arrangement of uniaxial
crystal, its crystallographic coordinates system
xyz, coordinates system XOY on the crystal’s
second surface, projection system (lens) and

coordinates system XO'Y' in screen plane
screen
Coordinates of point of intersection A of

extraordinary wave wavevector with output (second)
plane of the crystal XOY are found in the second
coordinates system XYZ where axis 7 is a continuation of
the normal @ to the first surface and axis Y is a projection
of optical axis z on to the second plane.

Reverse transition from the coordinates system XYZ
to crystallographic system xyz is carried out with the help
of two turns at first a turn to the angle | up to alignment
of axis 7 with axis z and then a turn around the axis z to
some angle y up to alignment of two other axes with axes
x andy.

Directional cosines M, I, and K, (i=1, 2, 3) of normal,
incident wave and refracted wave in the coordinates
systemn XYZ equal to:

M, =0, M, =0; M, =1
L, =1, L, =11 -cos’a;

L, = cos al-cosineol anglebetweenTand Z)
X Y h

_—  K,e——— K= ———
e N R e

(15)
where, h is the crystal’s width. Matrix T, of the first turn
to angle 1y is given by:

K =

1 0 0
T,=| 0 cosy -sinyr (16)
0 siny cosy

After this tum directrices of the cosme m a
new Intermediate Coordinates System M, L, and K,
(1=1, 2, 3) equal to

M,, = 0; M, = -siny;, M, ,= -cosyr,
L, =1, L, = ¥1{1*-cos’a cos yrcosacosys,
L, = 1-1° -cos’ o sin yr+cosocosys,

X ] Ycosy hsinys
K= Tz 20 1T 2 w2 1.2 7 212
JX +Y*+h JX +Y*+h JX +Y +h
K = Ysiny hcosys

BRIy XY

After the second tumn to the angle v up to alignment
of two other axes of the coordinates system with axes of
crystallographic coordinates system, matrix of which T, is

given by:
cosy -sinys 0O
T, =|siny cosy O (17)
0 0 1

We finally obtain values of directional cosines of
normal, incident and refracted extraordinary wave m,, 1, and
k (1=1, 2, 3) besides k; are expressed now via coordinates
of the point of intersection of extraordinary wave vector
with the crystal second surface:

m, = SINYSINy; I, = -Sinycos y;I1, = Cos Y,

1, =lcosy- (1}1—12 -COSZOLCOSIIJ-COSOLSinJ) siny;
1, =1siny+ (\[1—12 -cos’oLcos w—cosasinw) COS Y,
l,= \’1-12 -cos’ausin yr+cosccosy,

Xcosy Ycoswy hsinys . (18)
k = - - siny;
V3T R WX Y R XY
- Ksiny N Ycosys i hsinys cos:
VEYint WX R Y
o = Ysinys hcosy

o VXY R XY 4+h?

Equation 18 for directional cosines we substitute into
Frenel equation written in the form of Eq. 14 and after
necessary transformations we obtain an equation of
formally 4th degree which 1s not presented because of
extreme bulkiness. Now, it has no mtroduced unknown
intermediate values 1 and v. A corresponding polynomial
in two letters X and Y can be decomposed into two
multiplicand, one of which is multiplier (3X*+Y’+h’) by
which the reducing may be performed because equation
+Y*+H = 0 has no real solutions. After reducing we have
the following equation of the second order:
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AXHAL Y A YA, =0 (19)
Where:
A =N; (Nﬁ—sinzot),
A, :NiNs-sinzcc(Nz sin’ 1|J+N§ cos’ \p),
A= Zhsinwycos yrsin’ o:(Ns—Nz ),

A,=-h*sin’ cc(Né sin® y+N? cos® \p)

Equation 19 should be regarded as an equation of a
curve described by wave vector k of an extraordinary
wave (more exactly, its continuation) on the crystal’s
output surface under incident ray rotation at constant
angle ¢ around the normal to the crystal. In case when
I = 0 (the optical axis coincides with the normal to the
crystal) BEq. 19 1s an equation of a circle:

2.2 22
N:hsin® o

—e T = 20
N; (nﬁ—sinzot) (20

XHY =

In all other cases (O<r<7/2) we have an equation of
an ellipsis. Analysis of Eq. 19 shows that ellipses
centres do not pass through the coordinates origin,
except for the case when the optical axis is orthogonal to
the normal (y = m/2). In the last case ellipses have a
maximum eccentricity.

Coordinates X and Y from Eq. 19 are used for writing
of the formula of path difference A and then we express A
via coordinates X' and Y' of the point of intersection of
ordmary and extraordinary waves on the conoscopic
pattern observation plane. Let us rewrite Eq. 3, replacing
phase difference & with path difference A for isochromes
of m order:

A =mh=h(n_cosp, N, cosp,) (21)

= N,; sina/sinp, =
1n,), let us bring Eq. 24 to the followmng form:

Using refraction laws (sina/sinp,

sinccosf,

A—nﬁn—h[m ,fNZ -sin U,J (22)

To write the value of cosp, let us use coordinates X
and Y of output of the extraordmary wave vector on to the
crystal’s second swrface with the help of a trivial
relationship cosp, = hif3?+Y? and after substitution into
Eq. 22 and simple transformations we obtain a precise
expression for the path difference:

(XCHY+h’ )smot+

V'X +Y?
sin o, hsino. — XY |- (23)
—sm o
th

\’ SIH o4

Axes X' and Y' of the coordinates system on the
screen showing 1sochromes are chosen in such a way that
they are parallel to axes X and Y on the crystal’s second
surface. Therefore, the angles generated with the axes of
of the section OA and O'A', sketched from the
coordinates system origins to points A and A’ of outputs
of extraordinary wave vector on the crystal second
surface and refracted angle on the screen located in focal
plane are equal. Coordinates of points A and A' in both
coordinates system are connected by Eq. 24:

‘\fX +Y X-= '\f +Y (24)
\/(X) HY'Y J(X) HY

A=mA=

Besides, fix"+(Y"’ /f =tge Wherefrom formulas are
derived:
2p2
X2+Y2 = 72 f —
(3" etg a (25)
- X'etgoy X +Y v = Y'ctgcc\/X2 +Y’
f T f

Having noted that AX and Y are included into the
path difference equation only as sum of squares and
having denoted this sum as B’, we rewrite both Eq. 22 and
18, obtaining the two equations system:

A=mi=

2+ 2 : : 2
{B“+h )SmaJrsino: hsina Bl hN;
JNS-sinzot \/NS—SiHZC(.

(26)

{thj Ot[AI(X')Z]} Bz{iAﬁ(Yl;)"tg“]wm —o 7)

When solving quadratic relative B Eq. 27, let’s take
plus sign before the root (because 3’+Y*:0) and
substitute the found value of B mto Eq. 26 the path
difference equation after which we obtain at last the
umiaxial crystal isochromes equation. As a result of
necessary transformations Eq. 26 gains its final form (for
obvious convenience of recording, prime marks of
coordinates X' and Y' are now omitted):
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2

Vs
) T — ey -
+
mhs ;Y f ﬂ/NéO{Z*YZ*fZ)‘XZ'YZ
: XY NI Y )

+1

0

2+ 2+2
m?uXhY f+JN§

2
(EHY Y }

(28)
The uniaxial crystal isochromes equation, obtained
without any approximations in the form Eq. 28, specifically
is the most space-saving and convenient for practical
computer calculations of form of isochromes of any order
under random angles | between the optical axis and the
normal to crystal’s faces. For final solution of an
important theoretical problem of order of curves
1sochromes of umiaxial crystals for general case of a
random angle r between the optical axis and the normal,
Eq. 28 should be brought to the canomcal form m which
on the left side there 1s a polynomial m two letters
Xand Y:

BX+B, XY +B, X' +B, X' Y*+B. X'V +
B, X HBXTY B XY 4 BXAY B X (29)
B, Y*+B,Y°+B,Y'+B,, Y +B, Y +B, =0

where, B, 1s coefficients mncluding values depending on
properties and sizes of a crystal, parameters of the optical
system and 1sochromes order. These expressions are very
cumbersome and due to this here they are omitted.

Thus, in general case of a random angle 1 between
the optical axis and the normal, a precise equation for
uniaxial crystal isochromes is an equation of not the
second and not even the fowth order as it appears
from the known works but of the eighth order
(Kolesmkov et al., 2013b). This 1s especially important for
studying of crystals optical quality with the help of
conoscopy method. Isochromes forms, appearing under
certain angles |r and other parameters of the test which do
not cormrespond to any curves of the second order,
result from the precise theory and should not be
regarded as evidence of gross breaches of crystal
optical indicatrix.

In case of coincidence of optical axis direction with
the normal to crystal (f = 0) Eq. 28 gives circles to
isochromes; these circles have radii R, which depend
onorder m and other test parameters in the following
way:

Fig. 3: Isochromes in a conoscopic pattern of a crystal
which 15 cut parallely to the optical axis (f = 90°),
estimated according to Fg. 28 and 31

AR MANENE 3 m’ N2-h2AmNZ -h*AmN? +

0N (N2 NN N + AN
m/ AN AR A m NI NE +
ShARm NENE 20 A m? N+ N 2R NENE+h N

(30)
There is only one of the known works by Landsberg
(2003) which correctly, though without mathematical
manipulations, notes that contrary to established opinion
in case when an optical axis is orthogonal to another
optical axis (f = 90°) 1sochromes are not hyperbolas.
Landsberg (2003) says the following words about these
curves. “almost hyperbolas”. Analysis of Eq. 28 gives a
comprehensive msight mto 1sochromes for case 1 = 90°:
after completing necessary transformations we obtain an
equation of the fourth order as follows:

Bx'+B,y' +B.x'y +B.x* 4B,y +B, = 0 3D

where, coefficients B, in the polynomial on the left
side are quite cumbersome expressions. Figure 3 shows
isochromes in a conoscopic pattern of a crystal which is
cut parallely to the optical axis (i = 90°), estimated
according to Eq. 31 under the following parameters of the
crystal and the optical arrangement: h = 0.02 m; N; =
2.2931;N,=2.452;, A=5.46x10"m; f=0.2m.
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Fig. 4: Isochromes in umaxial crystals conoscopic patterns, estimated according to Eq. 27 under different angles
between the normal and the optical axis (n space between orders)

Notwithstanding  the
hyperbolas 1sochromes are not hyperbolas in fact they are
curves of the fourth order.

Computer analysis of Eq. 28 for borderline cases

formal resemblance to

when the angle between the axis and the lines” normal is
within 0-90°, shows that under one and the same value of
I in a conoscopic pattern there can be isochromes of
different orders of completely different forms, including
closed and unclosed ones. Corresponding regularities of
1sochromes forms evolution under increase of the angle
between the axis and the normal from 0-90° are
shown in Fig. 3 which includes not only values of | but
also space n between calculated isochromes orders
(Fig. 4).

EXPERIMENTAL VERIFICATION OF
DERIVATIVE RELATIONS

For obtaining conoscopic patterns, we used the
optical arrengement including laser, polarizer, lens which
transformed laser beam into a cone one, analyzer,
projecting lens and rear-projection screen, belund which
there were a digital camera for recording of isochromes
images. Experimental conoscopic patterns of paratellurite
crystals for angles between the optical axis and the normal
Ir = 16° and r = 84° are shown in Fig. 5.

Thus, calculated and experimentally verified forms of
isochromes coincide within the limits of noise influence in
real images connected with nonideality of optical
arrangement elements and laser beam structure with
speckles and with minor inhomogeneities in mternal
volumes of the crystal and its surfaces.

RESUME

Only in one case when the axis coincides with the
normal, uniaxial crystals isochromes are curves of the
second order. In all other cases, they are curves of at least

Fig. 5. Experimental conoscopic patterns of paratellurite
crystals with faces, normals to which generate
angle \y = 16° and |y = 84° with optical axis [001]

the fourth order, described by the eighth order equation
in some cases having reducible solutions. These curves
look like ellipses, parabolas or hyperbolas merely
occasionally but in fact they are curves of the fourth
order. In addition, the form of curves-isochromes depends
not only on the angle  but also on maxima order. A
well-known assertion that under <arctg /2 isochromes
are ellipses and under Yrarctgy2 isochromes are
hyperbolas 1s wrong.

CONCLUSION

High sensitivity of form and location of isochromes
1in uniaxial erystals conoscopic patterns to mmor changes
of their physical properties, state and structure makes it
promising to elaborate theoretical and technical aspects
of the conoscopy method. To create mathematical tools
allowing the most accurate estimation of location and form
of isochromes under any orientation of the normal to
optical faces in relation to the crystal’s optical axis, we
established the equation of the curve described by the
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vector of the extraordinary wave on the output surface.
Without approximations which are usually made, it helped
to establish the equation for isochromes of any order in
the uniaxial crystal conoscopic pattern observation plane.
Because it 13 of the eighth not of the second or the fourth
order, presence of isochromes in form of curves of order
which 15 higher than the second one i1s physically
founded.
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