Research Journal of Applied Sciences 9(12): 1120-1123, 2014

ISSN: 1815-932X
© Medwell Journals, 2014

Error Correction Method Results in a Multiplication of the Supercomputer

Nikolay Ivanovich Korsunov, Igor Sergeevich Konstantinov and
Aleksandr Aleksandrovich Nachetov
Belgorod State National Research University, Pobedy St. 85, 308015 Belgorod, Russia

Abstract: This study proposes a method for the detection and correction of errors in the implementation of the
matrix multiplication supercomputers due to noise. The proposed method based on a comparison of the results
of the two operations with using CUDA-technology. Operations are performed in parallel by the action of the

same mterference.

Key words: Supercomputer, detection and correction errors, matrix operations, CUDA-techmology, Russia

INTRODUCTION
One of the major transformations used in
supercomputers are matrix operations (DuBois et al., 2008,
Russek and Wiatr, 2007). When the disturbance matrix
operations are performed with errors and error detection
and correction performance matrix transformations in
supercomputers is an urgent task (Korsunov et al., 2013).

Known method to detect errors of arithmetic with
arithmetic codes, based on a comparison of the selected
module results of operations and control over the
information bits (Teekaput and Chokchaitman, 2005).
The method can detect errors i arithmetic operations
provided wmmistakable result of the operation of the
check digit. This imposes limits on the duration of the
mterference and requires separation of run-time
operations information and control results. Another
disadvantage of this method is the lack of adjustment of
the errors identified in the performance of each of the
control of the operations of scalar quantities.

Another method of detecting errors (Farazmand and
Tahoori, 2010) during conversion information is based on
multiple overlapping and decided to exclude results with
an error by the majority principle. Although, the method
and allows you to adjust by selecting the mistake but as
a method of error detection using arithmetic codes require
error-free operation i most of the time intervals of
multiplication are used to perform matrix multiplication
2k+1,k=1, 2, 3, ..., L. The choice of k 1s associated with
the duration of the disturbance. These developments
significantly affect the performance of a supercomputer in
the processing of information from the detection and
correction of errors in operation noise (Cotroneo et al.,
2013).

MATERIALS AND METHODS

This study proposes a method for the detection and
correction of errors mn the implementation of the matrix
multiplication supercomputers due to noise. Using
supercomputer involves the use of parallel computing. For
parallel computing in the multiplication of the matrix A
(size nxm) with elements a; and vector B (size m) represent
multiplication by the following steps.

Step 1: Multiply each element of the jth columna; to jth
element b, of the vector B. For parallel computation we
obtain m-vectors with elements:

c.=a -bj,jfl,m (1)

1 1

Step 2: Define the error of each of scalar multiplications
(Eq. 1) and then adjust each of these multiplications. For
error correction scalar multiplication we propose a method
based on duplicate using one of the multiplier. Since, the
operation (Eq. 1) is performed in parallel for each column
of the matrix A independently, then these operations are
performed autonomously and m parallel for all the
colummns of the matrix A. The result 13 an autonomous
detection and correction of errors, introduced in the
calculation of each element ¢; in accordance with the
parallel execution in each jth column and detection
operations of error correction. Autonomy error correction
i each of the columns allows to perform parallel
operations to correct errors multiplied in all columns:

j=1ln

Step 3: Calculating the result of the conversion of vector
C elements in the form:

Correponding Author: Nikolay Ivanovich Korsunov, Belgorod State National Research University, Pobedy St. 85,

308015 Belgorod, Russia

1120

Res. J. Applied Sci., 9 (12): 1120-1123, 2014

Performing matrix A multiplication by a scalar b and
determining input values for each amendment for each
value j in a,, calculated correction vector:

0=a-0c
Where:
o = o with fixed values 1, j
& = Corrective amendment

When calculating the corrections for correcting
parallel for each ith scalar multiplication (Eq. 1), due to the
execution of the same transformations all processor
elements, the amount of which is determined number of
elements of the matrix column A, provided full load of
processor elements during the time interval T, required for
operations.

In calculating, the relative amendments by one
processing element and parallel computation of absolute
amendments during time T, uses one processing element.
The remaining processing elements remain in standby
mode. Tf other operations not provided, multiprocessor
system 1s used inefficiently (Nikolov et al., 2008).

RESULTS AND DISCUSSION

Main part: This study proposes a method for the
detection and correction of errors in the implementation of
the matrix multiplication supercomputers, due to noise and
lead to the result:

C=AB+AC (2)
Where:
A .. Bux = The matrix of input operands
Co = Matrix corresponding to the result works

with an error matrix defined error AC

The proposed method 1s also based on a comparison
of the results of the two operations, one of which 1s
executed with operands A, B and the second with
operands A, B, in accordance with Eq. 2, operations
are performed in parallel by the action of the same
interference.

Represent the result of the multiplication of matrices
A, B inthe form R, R,.. R,..R,, where, Ri column vector
obtained by multiplying the matrix A by the ith column of
the vector B:

Fig. 1: Graphical representation of the proposed method

Where:

scalar equal jth element of the kth column of the matrix B,
D; = byA;: matrix column. In accordance with (Eq. 2) the
effect of ncise can cause errors m D; the vector
multiplication by a scalar or vector addition to errors.
Since, the number of multiplications of vectors by scalars
significantly greater than the number of operations of
vector addition, the greatest interest is the detection and
correction of error multiplication of vectors by scalars.

In the proposed method are performed in parallel
multiplication of vectors A; by scalars by, which
graphically represents the family of straight lines
emanating from the same point at an angle determined by
the corresponding element a; of the matrix A; (Fig. 1). The
result of multiplication a; by by, (Eq. 2) is represented as:

c = aub]k, i=1,m

and for the values of i =r and i = s, respectively:

c.=ab,.c =ab,)]
From Eq. 3 that:
Y (5)
a

If ¢, and ¢, are calculated in parallel and at the same
time of interference which leads to errors in the
calculations ¢, and ¢, in accordance with Ac, and Ac,

linked by the relation:

1121

Res. J. Applied Sci., 9 (12): 1120-1123, 2014

a.
Ac, = L Ac, (6)

Ay

Taking Ac/a, as a relative error &, the error of the
mner product matrix elements D, can be determined cnly
by the relative error 8, of the scalar product in the jth
column:

8,=5.a (7

We define an error &, multiplication of two scalar
quantities:
c=ab

When 1s a graphical interpretation of the slope with
respect to the x-axis b. Error calculation of the product
leads to the deviation angle and the result:

¢, =ab, =c¢ +Ac (8)
Calculate the product with the error:
¢, =ab =c, +Ac, 9)

Since, Ac, and Ac; as well as ¢, and ¢, related by the
same Eq. 4 and 5, then we require that the difference
between Eq. 8 and 9 equal to a certain value b = b;+Ab of
the expression:

c,—¢ =b +Ab (10)

When taking into account (Eq. 4 and 5) it is easy to
determine the relationship between a, and a, as:

a,=a +1 (11)

And as Ab the error is reduced to the product of the
factor b, then the error 1s determined by multiplyng:

Ac=Ab-a (12)

Thus, the emor Ab 1s the relative error of
multiplication by a scalar b, matrix elements A, Hence, the
multiplication algorithm jth column of the matrix by a
scalar that represents J, the item in the kth column of the
matrix B is represented as a sequence of steps:

¢ Perform the multiplication of elements a; in the
element b, foralli=2,3, ., m

+ Calculate Ab = (¢c,~¢,)-by, = bc;

* Calculate multiplication d¢, a; = Ac;

¢ Adjust the results of multiplying a;, 1 =1, 2,
the value of Ac;

m on

cees

Host Device
Grid 1
Kemnel Block Block Block
1 (0,0) 1,0) (2,0)
Block:” Block % Block
0.4 1 %21
. r [
P .
A eridg
Kemel ‘,"' &

& -‘;
Block (1, 1)

Thread | Thread | Thread | Thread | Thread
00y | (Lo | ey | 3 | o

Thread | Thread | Thread [Thread [Thread
([N]} L 2.0y [EN) 1y

Thread | Thread | Thread [Thread [Thread
i, 2y 1,2y 12,2 2 42y

Fig. 2: The programming model for graphics processors

This sequence of steps to execute in parallel for all
the columns of A and all columns of the matrix B.

The programming model for graphics processors
(Fig. 2) the grouping of flows (NVIDIA, 2014). Streams
are combined into blocks of threads-one-dimensional
or two-dimensional grid flows interacting with each other
via shared memory and synchronization points. Program
(kernel) is executed on the grid thread blocks. At the same
time, executed one mesh. Each umt can be one-, two-or
three-dimensional shape and may be composed of
512 thread on the current hardware.

Blocks of threads are running in small groups called
warp, size -32 threads. This 1s the mimmum amount of data
that can be processed i multiprocessors. And since it 1s
not always convenient, CUDA allows you to work with
blocks contaiming from 64-512 threads (Ding, 2014).

Grouping of blocks in the grid allows escape from the
restrictions and apply the core of a larger number of
streams in a single call. Tt helps when zooming. If
insufficient GPUJ resources, it will perform consistently
blocks. In the opposite case, the blocks can be executed
in parallel which 15 important for optimal allocation of
GPUs on different levels, ranging from mobile and
integrated.

CUDA Memory Model in different byte-addressable
opportunity, supporting both gather and scatter. Fairly
large number of available registers for each stream
processor, up to 1024 pieces. Access to them is very fast,
they can be stored in 32 bit integers or floating point
numbers (Dudnik ef al., 2009).

Computational experiments were performed on
high-performance computing system based on NVIDIA
Tesla M2090, Belgorod State University using technology
CUDA. The computing node which is the video card,

1122

Res. J. Applied Sci., 9 (12): 1120-1123, 2014

700
600
500
400
300
200
100

0 - T T T ,
500500 1000x1000 20002000 4000x4000 8000x8000

Matrix size

Time (msec)

Fig. 3: Results of numerical experiments on the video card
NVIDIA Tesla M2090

4-core Intel 5570 2.4 GHz RAM-24 GB. Computational
experiments demonstrated in Fig. 3. Here, on the
horizental axis shows the dimensions of the matrices and
the ordinate time in milliseconds.
The resulting graph can be described by the
equation:
v =0.08x — 47.3

Known methods for detecting and correcting errors
represent a choice between speed and accuracy. Also,
many of these different limitations are imposed. The
proposed method 1s based on using CUDA-technology,
showing good results. The method can not only detect
the error but fix it in a short time.

CONCLUSION

Thus, the proposed method can quickly multiply
matrices using a super computer and correct the result
after noise impact.

ACKNOWLEDGEMENT

Research on this subject conducted as part of the a
state contract No. 14.581.21.0003 Russian Ministry of
Education.

REFERENCES

Cotroneo, D., F. Frattini, R. Natella and R. Pietrantuono,
2013, Performance degradation analysis of a
supercomputer. Proceedings of the TEEE International
Symposium on Software Reliability Engineering
Workshops, November 4-7, 2013, Pasadena, CA.,
pp: 263-268.

Ding, C., 2014. CUDA tutorial. http:/geco.mines.edu/
tesla/cuda_tutorial mio.

DuBois, D., A. DuBois, C. Cennor and S. Poole, 2008.
Sparse matrix-vector multiplication on a
reconfigurable supercomputer. Proceedings of the
16th International Symposium on Field-Programmable
Custom Computing Machines, April 14-15, 2008,
Palo Alto, CA., pp: 239-247.

Dudnik, V., V.I. Kudryavtsev, T.M. Sereda, S.A. Us and
M.V. Shestakov, 2009. of the

opportunities of tool system Cuda for graphic

Application

processors programming in scientific and technical
calculation tasks. Comput. Modell. Syst., 52: 159-165.
Farazmand, N. and M.B. Tahoori, 2010. Multiple fault
diagnosis m crossbar nano-architectures.
Proceedings of the IEEE European Test Symposium,
May 24-28, 2010, Praha, pp: 94-99.
Korsunov, N., V. Mikhelev and A. Lomakin 2013.
lattice

stationary

networks for

fields.
Proceedings of the 7th International Conference on
Intelligent and Advanced
Computing Systems, September 12-14, 2013, Berlin,
pp: 369-372.

NVIDIA ., 2014. Parallel thread execution ISA version 4.1.
CUDA Toolkit Documentation. http:/docs.nvidia.
com/cuda/parallel-thread-executiony.

Nikolov, H., T. Stefanov and E. Deprettere, 2008.
Systematic and automated multiprocessor system

Application of neural

modeling of physical

Data Acquisition

design, programming and implementation. IEEE
Trans. Comput.-Aided Des. Integr. Circuits Syst,
27: 542-555.

Russek, P. and K. Wiatr, 2007 Dedicated
architecture for double precision matrix
multiplication in supercomputing environment.

Proceedings of the Design and Diagnostics of
Electronic Circuits and Systems, April 11-13, 2007,
Krakow, pp: 1-4.

Teekaput, P. and 5. Chokchaitam, 2005. Secure embedded
error detection arithmetic coding. Proceedmngs of
the 3rd International Conference on Information
Technology and Applications, JTuly 4-7, 2005,

Sydney, Australia, pp: 568-571.

1123

	1120-1123_Page_1
	1120-1123_Page_2
	1120-1123_Page_3
	1120-1123_Page_4

