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Automatic Balancing Simulation of the Centrifugal Grinding-Mixing Unit
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Abstract: The study describes the getting of models to estimate changes of the dynamic bearing responses
of the centrifugal grinding-mixing unit with automatic balancing and its resultant moment. Using the d”Alembert
principle the mathematical model to estimate changes of the dynamic bearing responses and torque depending
on the positions of the counterweights shoulders is derived. In the Adams Software, the parametric computer
model of balancing of the unit with the same mitial parameters 1s built. For specific optimal positions of the
counter weights dynamic responses and torque using the mathematical and computer models are calculated
and their identity 1s shown. Integration of the computer mechanical model into a simulation medel of the control
systems 1n the MATLAB/SIMULINK Software 1s shown. Changing of the dynamic bearing responses of the
centrifugal grinding-mixing unit when changing the position of the counter weights and when the material
moving through the grinding chambers from the top to the bottom, resulting in a co-simulation using ADAMS
and SIMULINK are illustrated. The prospects of using the resulting computer model are described.
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INTRODUCTION

Energy-efficient Centrifugal Grinding-Mixing Uit
(CGMU) used for the production of fine materals and
homogeneous composite mixtures (Glagolev et al., 2011)
is based on the most common type lever slider-crank
mechanism (Anis, 2012) used in compressors, internal
combustion engies, etc. Due to the kinematic scheme of
slider-crank mechanism top working chamber of CGMU
performs translational motion, the average-plane-parallel
along an elliptical path, and bottom-rotational
(Sevostyanov et al., 2005).

When links of slider-crank mechanism move with
variable speeds due to changing the inertia forces
periodic dynamic loads occur which are the source of
undesirable oscillaions of mdividual lmks of the
mechanism. These vibrations are transmitted to the joints
and machine parts containing slider-crank mechanisms
(for example, bearing rod of CGMU) and cause fatigue
effects there by reducing their residual life and overall
reliability of the units and machines (Bushuev et al.,
2014).

There are many methods of balancing the slider-crank
mechanisms to 1mprove their vibrational state
(Arakelian and Smith, 20035). The main ones are: Balancing

by a counterweights attached to the links (Artobolevskii,
1968; Shchepetilnikov, 1982). These methods are based on
the redistribution of mass of the mechamsm by adding
counter weights to the moving links where in the center of
mass does not change its position and thus disturbing
forces does not appear. Tt should be noted that such
balancing may be achieved only by a substantial mcrease
in the mass of the mechanism.

Balancing the necessary order harmonics of the
unbalanced forces and their moments of inertia using
counter rotating masses (Artobolevski, 1968,
Shehepetilnikov, 1982; Lanchester, 1915; Hirokazu ef af.,
1976). These solutions are based on the harmonic
analysis. Reduced inertia effects are primarily achieved by
disturbing forces and

and moments are

balancing certam harmonics
moments. Unbalanced forces
approximated by the Fourier series and then studied for
each frequency order. This approach was successfully
applied for balancing internal combustion engines.
Self-balancing using dual mechanism (Arakelian,
2006; Filonov and Petrikovetz, 1987; Turbin et gl , 1978;
Uralskiy and Sevostyanov, 2010). Adding axisymmetric
duplicate mechanisms captures the center of mass and
thus, balances the disturbing force. This approach
involves the construction of self-equilibrated mechanical
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systems in which two identical mechanisms perform
similar but opposite movement. In this case, the
disturbing force 1s entirely possible to implement mutually
exclusive or partial balancing. It should be noted that due
to the duplication the original design of the mechanism
becomes more complicated.

Balancing by using the effect of self-synchronization
(Zamyatin and Dubovik, 2004). Balancing occurs
automatically by synchronizing the movement of
pendulums and crank.

However, slider-crank mechamsm as a part of CGMU
(Fig. 1) has following features limiting the application of
the above methods:

In the process of grinding as a result of the
movement of the stuff the center of the mass 1s changed
which makes it necessary to stop the machine and to
change the position of the counter weights.

Different grinding bodies are used in the chambers
depending on the nature of the stuff grinding in CGMU,
therefore, load factor 1s varied which leads to the
necessity of changing the counterweights position.

Values of the inertia forces are of the same order as
the static forces because of the large mass of links with
the grinding chamber and a small length of the crank
(r- =2 cm).

Because of these features grinding-mixing units with
automatic balancing were designed (Rubanov et al., 2012,
Glagolev et al, 2014). In which m accordance with the

Fig. 1: Force diagram of linkage of the CGMU

command variable from the control systems based on
programmable position  of  the
counterweights is changed due to the existing energy of
rotation or external input energy, leading them to the
appropriate state of the minimum value of vibration. To
carry out simulation and subsequent synthesis of control
systems 1t 1s necessary to have a model of balancing
which would take into account the above features of the
CGMU.

Vibratory condition of units and machines is largely
determined by unbalanced inertia forces of rotating and
reciprocating translational motion of the masses
(Skvorchevskiy et al., 2009). Therefore, n this research
the task of obtaining the mathematical and computer
models which can define the dynamic bearing responses
of centrifugal grinding-mixing unit with automatic
balancing are considered.

controllers  the

MATERIALS AND METHODS

To obtain a mathematical model of CGMU balancing
1t 18 necessary to find by using the d’ Alembert principle,
the analytical expressions for the dynamic loads arising in
the bearings and guides.

Consider balancing of the CGMIUJ linkage with two
counterweights (the most common case) from the
calculation scheme shown in Fig. 1.

Figure 1 A, B and C-CGMU grinding chamber, D and
E counter weights, G, G; and G.-gravity forces of
grinding chambers, Gy and Ge-gravity forces of
counterweights, F,, Fy and F. the mertial forces of
grinding chamber, Fy, F -the inertia forces of counter
weights, M-torque applied to the link OA, R, R ~-dynamic
reactions in bearings, N-normal pressure force in the
slides, ¢ the angle determiming the current mechamsm
position.

Mass of the frame and the eccentric shaft is reduced
to the respective masses of grinding chambers. Weights
of the links DOC and CAE are neglected due to of their
smallness compared with weights of the grinding
chambers and counter weights. The friction force is also
ignored with regard to its smallness as in the guides is
used special grease.

Inertial forces of grinding chamber C and
counterweight D as DC link malkes uniform rotational
motion are determined only by the normal component of
acceleration directed along the link DC so:

F, = m o', )]

F, =m o’h, (2)
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Where:

me and my, = Masses of chamber C and counterweight
D, respectively

[] = Angular velocity of the link OC

rcandhy, = Length of the lnks OC and OD,
respectively

Directions of the inertia forces are shown in Fig. 1. To
calculate the inertia forces of other chambers and counter
welght define their acceleration. In the Cartesian
coordinate system xOy (Fig. 1) we have following
trigonometric functions:

siny = Acos
cosyr = fl-sin’ yr

where, 4 = 1./1, I-length of link CA. Then, from the Eq. 3

follows:
cosyr = 4f1-A% cos’ 4

Ratio [lambda] for CGMU is small so, it is advisable
to expression Eq. 4 is expanded using the binomial
theorem:

(3)

cosy = 4f1A  cos’p

2 2 2
= [1_7”__17;‘ -___J-[h_+h—+£7t“ +...Jcos 2+

4 64 4 16 512
a3
—+—A+.. |cosdg=...
64 256

When considering industrial designs of CGMU high
degree of accuracy is given by approximation in the
following form:

2 2
cos\y = ,{1-&2 cos’ @ = [1—7:1}—7;005 2¢ (5)

Coordinates of the grinding chamber B can be written
as follows:

Xp = X cos @
z (6)

Yp = I sin (p+15003w
Double differentiating the resulting equations over
time and considering expression Eq. 5 find:

2
c

=3 =-

Bx COs(,

(7
Yp =ag, = —mzrc [sin (p—%cos 2(p}

In the derivation of Eq. 7 it was taken into account
that:
dx _ de dx
dt  dt de

and d/dt = ¢ = w. Thus, the inertia force to be added to
grinding chamber has projections on the coordinate axes:

{F;s = g dg, (8)

F‘l‘By :_mB a’By

Similarly, for the grinding chamber A:
y, = I.sing+lcosy (%
(coordinate x, = const = 0) and taking into account Eq. 7:

¥, =a,, =-0'r(sing-Acos2g) (10)

a (11

i
FAy =-m, Ay

Finally, for counterweight B we have:

X, = -hsiny 12)
Ve = L sin@+(1+hy Jcos

where, hy is the length of a link AE. Considering Eq. 3 and
5 the acceleration of the counterweight E is obtained:

Lo _ .
Xp =ag, = o'hAsing (13)
¥z = ag, = -’ (I"c sing+2° (1+h; jcos Zcp)

and 1nertia forces:

F}IEX = Mg (1 4)
|

Ey = Mg aEy

Terms of zero equivalence m the system of forces can
be written as:

»  Projected on the axis Ox:
R, +FL cos p+F, *N-I} cos p+Fy, =0 (15)
s Projected on the axis Oy:

R -G, +F -Gy +E, -G +E sing-G-F sing-G +F_ =0
(16)
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¢ Sum of the torques relative to the point O:

-Ny,-Gpx,-G . cosp+G h, cosp- (17)
G Xg +img (Fy Jmg (Fy )+M = 0
are calculated

+  Moments of inertia Fg' and Fp
according to Varignon theorem:

m, (F) = xF,-yE, (18)

The moments of inertia forces F.' and F,' relative to
the point O are equal to zero. The equation for
determimng the moment of M 1s obtained by applying the
principle of energy:

T-T, = A, (19)

Congider position of the mechanism corresponding
to zero value of the angle [phi] as the mitial. At this time,
the mstantaneous center of CE link speed 1s at infinity.
Consequently, the speed of the chambers A, B, C and
counterweight E at the imitial time are equal to [@]x1. and
the speed of the counterweight D m the same time 1s
[@]xhs. Velocity modulus of chamber C and counterweight
D are constant and equal to the initial values. Thus:

2 2 2 2
m,v m. v mqv T,
I-T, = ;AJF ; B+ _—E E-(mA+mB+mE)( )

(20)

Velocity of chambers A, B and counterweight E for an
arbitrary angle can be found by differentiating the known
relationships of their coordinates Eq. 6, 9 and 12 of the
angle [phi], 1.e:

Ya=V, = o {cosqﬁisinhp} (21)

Xy =V, = -mr—csin(p
: (22)

A
Ve = Vg, = 01 {cos (p+4sm2(pja

Xp = Vg, = -wh Acose,

K (23)
Ve = Vg, = m{rc cos<p-2(1+hE)sin2(pj

Then, determine the work of forces. At the same time
take mto account, first that the reaction forces do not

malke research application point O of reaction forces R,
and R, is fixed and the force N is perpendicular to the
displacement of the slider; second, gravity force is a
potential so its research can be calculated from the
equation:

Age = &Yy Vo) (24)

where, K denotes one of the bodies A, B, C, DorE,
g = 9.81 mfsec’ acceleration of gravity, vy, Vi the
coordinates of the body at a certamn angle [phi] = 0 and
[phi] = 0, respectively:

Finally, the research of the torque applied to the link
and providing rotation of the link with a uniform angular
velocity [@] 1s calculated by Eq. 25:

Ay, = ]PM do (25)

In view of the mentioned Eq. 19 can be written as
follows form:

P
T-T, = 3 Agt[Mde (26)
K=A ,E 3
Whence:
d dT d
M=—| T-T,- L Z Agg
dep K=& E do dol % =
(27)

The first term of the Eq. 27 can be transformed using
the ratio:

d mv’ dv dv dt  mv

— Smyv—=mv——=—da, =

de 2 deo dtdp o (28)
mvvatva, m

= —( V,a, +vyay)
® v @

where, a 18 acceleration so that;

dT _
dep

B Z mK(VKXaKX+VKyaKy) (29)

1
Og=gBE
The second term, taking into account transformations:

4 e oyt _me 30y
d(ng(YYD) M T e

is written as follows:

d g
_d_[ > AGKJ == My vy, (31)
Plk=aE @ .
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Eq. 27 thus, takes the final form:

1
M=— Z My, (Vxxaxx Jr"’Ky(aKerg))JQC:T:COS(I:’(Incrc'm]:\hD)
Wg=sBE

(32)

Or putting it consistently n the expressions for the
velocity and accelerations, finally obtain:

M=m,Z+m 7 +m.Z +m_7, +m_Z. (33)
Where:

Z =1, (cos cp+%sin 2(p] (g-cozrc (sinp-Acos2¢) )

2.2

. A
Z,= %sm(pcos P, {cos (p+zsm 2(p]

(g-mzrc (Sil’l (p-%cos 2(pB

. A .
Z, = -w’h,’ sinpcos g+ {rc cos (p-?(1+hE Jsin Q.(p}

(g—mz (rc sin+A° (1+hy Jcos 2(p))
Z, = 1.gcosg
Z, =-h gcosg
Having the expression for the torque Eq. 33 find an

expression for the dynamic pressure in the slide N
according to the expression Eq. 17 using Eq. 18:

M-G %y -G o 1p cos p+G hy, cos -

N= GEXE +X5Fli3y _yBF];x Jr)‘;EFiEy'YEPEx (34)
Ya
@ T ma (b) :
reFma
ms
mc
Mp
me

Then, from Eq. 15 and 16 the value R, and R, can be
determined, respectively:

R, = F; cos¢-F; cos g-Fy, -N-F,
R, =G, -F +G-F +G E singt+G +F sing+G, -k,
(35)

As the expressions Eq. 33-35 the reactions N, R, and
R,, being the functions of independent parameters ¢,
hg, hy are bulky nonlinear periodic functions and for
simulation of the control systems, for example in
MATLAB/SIMULINK Software is inconvenient to use a
mathematical model of balancing n this way even when
using programmable S-functions and using symbolic
computation. While complicating the model, for example,
taking mto account centnifugal moments of nertia or the
process of changing load factor, the adding of external
forces it 1s necessary to compose new equations to
rewrite S-functions, etc. Therefore, it 1s advisable to
develop a computer model of CGMU m ADAMS Software
which contams a Controls module, used to interface
ADAMS with MATLAB/SIMULINK Software.

Simulation model: 3D view of the developed model of
CGMU automatic balancing is shown in Fig. 2. The
mechanism consists of the following solids in accordance
with the design diagram (Fig. 1): CA, AE, OC, OD-(link);
A, B, C, D, E-(ellipsoid) which connected by jomts and
imposed motions which description 1s shown m Table 1.
Location of the counterweight E with shoulder hE' differs
from that given m calculation scheme shown m Fig. 1 in
which the shoulder of the counterweight is the link AE
but the calculation obtained by the mathematical model

©

Fig. 2: Multibody computer model of CGMTU; a) general 3D view; b) view with joints and motions and ¢) zoomed 3D view
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Eq. 34-35 can find the values of responses for balancing
by shoulder CE by reference shoulder in the opposite
direction with respect to point C, taking into account the
length of rod CA, ie, for example, hE' = 20 cm
corresponds hE =90 cm at | = 70 cm.

Using parameterization in the model allows changing
quickly aggregate values such as weight, length, umits,
etc.

However, the parameters of the masses cannot be
changed during the simulation and to change the load
factor for each marker’s center of gravity of grinding
chamber CM marker GFORCEs are added which set
change in mass. The format of these functions has the
form FX = VARVAL (mass)*ACCX (CM_marker) where
ACCX-function defining acceleration along the x-axis.
VARVAL it is the function which used to exchange values
parameters between Adams and Matlab/Simulink through
the Controls module.

As a result, the input parameters of the subroutine
defining the mechanical part in Sunulink are: [@], hy, h,
[Alm,, [A]lmg, [A]lm. Output parameters are dynamic
reactions R, R, N and torque M. For another thing forces
which are opposing repositioning of the counterweights
and used to set the load effects in models of actuators can
also be transferred to Simulink.

Mechanical part of the system is integrated into the
getup of the model developed in Simulink where using the
appropriate subroutines defined algorithms of changing
the mput parameters (Fig. 3).

Table 1: Description of joints and motions
Joints and meotions

Revolute joint

Translational joint

Fixed joint

Rotational motion

Translational motion

No. of joints and motions

= >

Velocity demand Limfreq

‘ [T PER FUR

E

g

%

hd

Limhd
Controlhd |§|
Limh ERy
[v] e
X
Controlh : —;lél
ontrothe Deltama LimA
Deltambl————— | BM
Deltamc LimB ) |E]
Loading chaM
LimC ENx

CGMU in ADAMS

Fig. 3: Co-simulation model of CGMU with automatic
balancing

RESULTS AND DISCUSSION

Numerical results: Tnvestigated CGMU has the following
parameters: m, = my = m. = mp, = my = 15kg 1,=002
m, 1=07m, AB =BC, [¢] = 40 rad sec™" (382 rpm).
Bushuev et al. (2014) the optimality criterion was
formulated as the minimum of RMS sum of squares of all
reactions or which in formal language can be represented:

0

2
T{kﬁxR;ap,hD,hEﬁkRyR;((p,hD,hE>+ o
k,N*(q,hp,hy)

Zm
_ {o <h, <3[m]
min
hp.hg |-3< hE, = 3[IH]

(36)
where, ky, = 10, ky, = 1, k, = 10 where the influence
coefficients. And optimal positions of the counter
weights: hy, =0.066 m, hy” = 0.254 m which are ensured the
implementation of the above criterion were found.

For given values of counter weights positions
graphics of changing the dynamic responses from the
angle [] calculated by a mathematical model given in the
form of Eq. 34-35 have the form shown m Fig. 4b.

Graph of changing torque, built on the basis of Eq. 33 15
shown in Fig. 5b. Corresponding calculation of dynamic
responses and torque using ADAMS computer model
showed that the results (Fig. 4b and Fig. 5b) are identical
to the results (taking mto account mitial phase shift [phi)),
obtained with the mathematical model to the nearest
millinewtons. It 1s noteworthy that this accuracy
dependent of solver parameters and the number of steps
and time of simulation ratio.

When moving the counterweight D with velocity
equals to 1 (cm)/[simulation time] without a counter
weight E there is a gradual changing of the dynamic
reactions R, and R, (Fig. 6) and it is clear that their lows
correspond to different positions of the counter weight.

If upper chamber fill a certain mass of grinding stuff
one-time [A]m,, the change in the dynamic responses R,
and R, during to the grinding process at constant value of
the counter weight position equals to h, = 3 cm and
without counter weight E will be as presented on the
Fig. 7.

Summary: Thus, in the grinding process taken place the
changing of dynamic bearings reactions of CGMU and
hence to minimize these reactions it is necessary to carry
out a new search using system of automatic balancing
built in accordance with the methodology of the design
described by Grigorevich (2013). It should be noted that
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Fig. 7: Changing the dynamic responses due to the loading changing of the grinding chambers

the chosen optimization criterion Eq. 36 is used in this
form because minima of dynamic responses and torque
are achieved at different positions of the counter weights.
And according to the results of research (Stativko and
Rubanov, 2013) mmimum points of vibration comcide
approximately with the mimmum points of the chosen
criterion with given coefficients of influence.

CONCLUSION

Obtained through the use of d’Alembert principle,
mathematical model CGMU with automatic balancing
allows calculating the dynamic responses in guides and
unit bearing, searching the optimal values of the
provisions of counter weights but it 1s not convenient and
flexible for programming, especially when simulating of
the dynamics of the automatic balancing systems. As it
was stated by means of calculation similar computer
model developed n ADAMS software 1s identical to
mathematical model but is more flexible and can be easily
integrated into simulation software of control systems. In
future, a variety of control algorithms under different
operating regimes of CGMU can be tested using the
developed computer model.
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