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Abstract: This study deals with the method for controlling a test stand of diesel engines based on fuzzy neural
network. Structure and traiming algorithm have been proposed for a fuzzy neural network to control a diesel
engine during testing. A knowledge base structure has been proposed. Fuzzy rules have been described to
control a diesel engine. Techmques and algorithms have been realized in the form of a computer program. The
effectiveness of the proposed automated diesel engine test system has been analyzed.
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INTRODUCTION

Leading engine companies are engaged in intensive
research and development work to improve the reliability
and durability of the Internal Combustion Engine (ICE)
and in particular, diesel engines (Zhou et al., 2014).

Research and testing of diesel engines are one of the
main means of checking the manufacturing quality of
parts and assembly units, sub-assemblies and engine as
a whole, its assembling adequacy, compliance of the
essential characteristics of a diesel engine with
requirements of technical documentation (Zhou et al.,
2008).

Types of diesel engine tests are regulated by GOST
and international standards TSO which prescribe the
acceptance procedure and requirements to the technical
level of engmes (Stefanovsky et al., 1972). After
accepting and launching diesel engines into manufacture,
an improvement of their design and technical and
economic indicators continues further.

Currently, testing of diesel engines is a complex and
time-consuming process, little different from the pilot
study. Therefore, the Automated Test Systems (ATS) for
engines are created.

Modern requirements to a continuous lmprovemernt
of the techmcal level of manufactured diesel engines has
resulted in increasing the share of the costs for tests
carried out when creating new models of engines. These
costs become heavier in case of inconsistency between
the levels of manufacturing automation and research
research. In comnection there with an automation of
technological processes of testing 13 one of the main
objectives of improving the technological level of
production and quality of the diesel engines.

Normalization of input parameters of a diesel engine
ATS shall optimally control a diesel engine during tests in
a steady state, ensuring at any time the required values of
output parameters of the engine. For this purpose, the
ATS generates control action on the basis of knowledge
base formed by fuzzy newral network (Zubkov and
Galwllin, 2011). A control action for diesel engine 15 the
movement of the regulator of a High-Pressure Fuel Pump
(HPFP) h.

A knowledge base has the form of fuzzy control rules.
Control rules have been developed using the theory of
fuzzy sets and fuzzy logic:

R®: If @ ANDM, ANDG, AND .. THENh (1)
Where:
k = The total number of fuzzy rules
R® = The entire set of rules
w = Linguistic variable characterizing the engine speed
M, = Lingustic varable characterizing the load moment

G; = Linguistic  variable characterizing the fuel
consumption

h = Lmgustic variable characterizing the position of the
HPFP regulator

Fuzzy rules are clear and smmple, unlike the
differential equations describing the engine and its
systems (Yao and Pan, 2014).

Mathematical algorithm for diesel ATS performance
provides a preliminary input of the engine parameters.
Suppose the ATS input parameters in the test program are
as follows: crankshaft speed-w (per min) the torque-M,
(Hwm) fuel consumption per hour-G. (kg/h). However, it is
possible to set more input parameters.
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Each input parameter will be further normalized. 1st
step 1s the calculation of the parameter arithmetic mean:
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Where:
x; = A parameter value
n = Number of observations

2nd step 1s the calculation of the standard deviation:
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3rd step is transfer of indicator values to the points
on a 10-point scale:
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FUZZIFICATION OF NORMALIZED ENGINE
PARAMETERS

Determination of membership degree of normalized
engine parameter to the specified membership functions
(fuzzification) is carried out using standard Gaussian
function represented in a rational form:

1
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Where:

%, = A normalized value of the indicator

¢, = Parameter of the formal neuron center set up in the
interval of [0, 10] on a 10-point scale. Depending on
the set number of formal newrons, a 10-point scale is
divided mto the corresponding number of segments
where ¢ is a midpoint of the segment

0, = A parameter (coefficient) of the function latitude. It is
originally generated by an automated system as
equal to 2/3 of the segment set by ¢,

b, = A parameter of the function form. It 15 originally
generated by an automated system as = 1 which
corresponds to the standard Gaussian fimction. ATS
performs fuzzification for each vector of the engine
mput parameters (Makushin ef af., 2009)

FORMATION OF FUZZY INFERENCE RULES
FOR THE ATS KNOWLEDGE BASE

An integral degree of membership of all engine
parameters entered in the ATS shall be determmed for
each of formal neurons. ATS applies an aggregation of
membership degrees of mdividual parameters using the
procedure of the algebraic product, suggesting that for
the k-rule of mference:

i
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CALCULATION OF CONTROL ACTION ON THE
DIESEL ENGINE

The system approximates fuzzy set to an accurate
solution h using the Mamdani-Zadeh model
(Kruglov et al., 2000). In case of M inference rules and
using the generalized Gaussian function as the
membership function, the movement of the HPFP
regulator 1s determined by the equation:

(k)
1=1 =1 X-—C(k) ij
1
1+ eCE
= ’ - (7

where, cj(k), 010‘), b, ® shall indicate the parameters of the
center, width and shape of | component x for k fuzzy
inference rule.

Figure 1 shows the structure of fuzzy neural network
for diesel ATS implementing the approximation function
Eq. 7.

This 18 a four-layer structure where the first layer
performs separate fuzzification of each of input variables
x (1=1 2,...N), determming the value of the membership
coefficient u,%(x,) for each k rule of inference.

The second layer performs the aggregation of
individual variables x;, determining the resulting value of
the membership coefficient w, = 1, %(x).
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Fig. 1: Structure of the diesel ATS fuzzy neural network

The third layer is the aggregation of M rules of
inference (first neuron-f;) and the generation of the
normalizing signal (second neuron-f,):

The fowrth layer consisting of one neuron generates
an output signal y(x).

TRAINING ALGORITHM FOR THE ATS
FUZZY NEURAL NETWORK

First stage (gradient method of steepest descent).
After formation of the output signal v(x), training error 1s
calculated which 1s defined with the Euclidean norm as:

E= %Zp:(y(xl)—dl )2 (8)
Where:

d = Expert evaluation
P = Number of traimng pairs (v, d)

Fuzzy networl training is based on error minimization.
Initially, the parameters ¢, 6,%, b™ are set according to
the set number of neurons n the network and the distance

between the thresholds of their sensitivity. Training error
is a model of feedback. Frror signals are sent through
the comnected network to the network mput (back
propagation) up to the first layer where the components
of the objective function gradient can be calculated with
respect to specific parameters ¢, 0., b®.

After formation of the gradient vector, the parameters
are specified by the gradient method of steepest descent
(Shatnawi and Al-Khassaweneh, 2014):

JE(n
Cgk) (n+1) = Cj(k) (0}, 6C((k)) ©)
1
JE(n
G?) (n+1)= Gj(l) (n)m, % (10)
1
. o 6E(n
b_l()(n+1) - bJ()( )_rrlb 8b5') 1)
Derivatives:
awl’ awlr awr
6C(k) 2 ac(k) 2 ab(k)
1

are calculated as:
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Forr =1, 2,..M where &, is the Kronecker delta
(d,=1if y(x)»dand §, =0 if y(x)<d):
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Network training is carried out cyclically as long as
the training error stops decreasing (Hao, 2014). Second
stage (an adaptive self-orgamization algorithm of fuzzy
network).

After traming the network by gradient method of
steepest descent, the obtained result of ATS vy(x)
research 1s subjected to training again by an adaptive
self-organization algorithm. As a result of 1its
implementation by the number of membership functions
and their location in the part corresponding to the
conditions (set of y(x;)) and conclusions (set of expected
scalar values d)) of fuzzy rules are determined.

DISCUSSION

The first cluster with a center ¢, = y,(x) 18 created
when the ATS works with the first pair of data (v,(x), d,).
It 1s accepted that w, = d, and the cardinality of the
set L, = 1. Let r be the critical Euclidean distance between
the y(x) and the center where the data will be mterpreted
as being members of the cluster created. In order to retain
the generality of the solution it is assumed that there are
M clusters with centers ¢, ¢;, .., ¢y and their
corresponding values w, m I, (I = 1, 2,.,M) at the
beginning of training process.

After reading the k training pair (y.(x), dy) the
distances between y,(x) and all existing centers ||y.(x)-c|
are calculated for 1 = 1, 2, ..., M. Let us assume that the
nearest center 1s ¢,. In this case, depending on the value
|[y(x)-¢)||, one of two situations may arise:

If |[yi(x)-¢| =1, than a new cluster ¢y, = y,{x) 1s created
while wy., (k) = d, Ly, (k) = 1. Parameters of previously
created clusters remain the same, i.e., wik) = wk-1),
L)y =TL(k-1)for1 =1,2, ..., M. The number of clusters M
increases by 1 (M = M+1).

Tf ||y (3)-¢||< than data are incorporated into 1, cluster,
the parameters of which are specified in accordance with
Eq 15-17:

wy, (k) = w (k-1)+d, (15)

L, 00 = Ly, (-1 (16)

6 () ~ S D3 00 am
L,k

After specifying the parameters of fuzzy network, the
function approximating the input data of diesel ATS is
defined as:

whereas other clusters remain the same, 1e., if 121,
wi(k) = wilk-D), Lik) = Litk-D for 1 =1, 2, .., M.

When repeating the above stages of the algorithm up
to k = p, each time specifying the M value, the data space
is divided into M clusters and the capacity of each of
them 1s defined as L, = L{x), the center as ¢, = ¢,(k) and the
value of accumulated function d attributed there to as
W= Wl(k)

Separation of data space into clusters occurs
independently and without the participation of a test
engineer in accordance with a predetermined threshold
value 1. Value r mn the developed diesel ATS 1s assigned
at a set number of formal neurons:

=10 (19)

where, 10 points of a 10 point scale; v: number of formal
newrons, set by the system user.

CONCLUSION

The proposed technicques and algorithms have been
realized in the form of a computer program “Automated
information system for testing diesel internal combustion
engines based on neuro-fuzzy network” (Galliulin and
Zubkov, 2011).

The effectiveness of the proposed newo-fuzzy
system for diesel engine control has been analyzed. Due
to the reduction of time for stand setting, the economy of
setting time will be 25% which results in 17% economy of
fuel.
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