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Abstract: In recent years, there is an increase in the number of open source software. Hence, the demand for

automatic software classification 1s also mcreasing. Latent Semantic Indexmg (LSI) 15 an mformation retrieval
approach that 1s utilized m classifying sowce code programs. This research proposes a Latent Semantic

Indexing classifier that integrates information on structural and frequency of terms m its weighting scheme. The
content terms are identified by extracting words in the source code program. Based on the undertaken

experiment, the LSI classifier is noted to generate a higher precision and recall compared to the C4.5 algorithm.
Furthermore, 1t 13 also learned that the use of structural information m the weighting scheme contribute to a

better classification.
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INTRODUCTION

Document classification has always been an
important application for information retrieval. Tt can
improve the speed of information retrieval and aid in
locating and obtaiming the desired information rapidly and
accurately. Now a days due to the development of
mformation technology, the demand for automatic
classification is increased. Automatic software
classification became one of the most important topics in
software engineering area (Kawaguchi et al., 2003). This
15 because of the new problems occurred upon
constructing of software archives. For mstance m 2002,
the SourceForgenet had over seventy thousand
registered software (Kawaguchi et al., 2004). As this
repository receives input (software files) from wvarious
developers whom have various backgrounds, categorizing
the packages relies heavily on the textual provided and/or
contained in them. One issue which arises from such
situation 1s the mvolvements of human which may be
subjective. Existing approaches that adopts manual
classification require more time and high level of software
understanding (Kawaguchi et of., 2003). This 1s because
of the large size code embedded in software and the
ambiguous code specification Hence, the developers
need to spend their time and efforts to know the specific

category that software belongs to. The process of

orgamzing the files may be carried out by a number of
employees and may resulted on unreliable classification.
This research tries to overcome such problem by
introducing the use of Latent Semantic Indexing (I.SI)
(Deerwester et al., 1990) that utilizes terms extracted from
source code program for classification purposes. The LSI
Information Retrieval Model builds upon the prior
research in mformation retrieval and using the Singular
Value Decomposition (SVD) (Golub and Van Loan, 1996)
to reduce the dimensions of the term-document space.
Such an attempt is seen to solve the synonomy and
polysemy problems that affect automatic mformation
retrieval systems. In this research, the LSI relies on the
constituent terms of the source code program to suggest
the program’s semantic content.

The undertaken research is an experiment to
investigate the utilization of both functional and structural
information in source code classification. Researchers
would like to identify if a structural and frequency term
weilghting scheme 1s more beneficial than using term
frequency on its own. Furthermore, the research is also
undertaken to see if L3I 1s a better classifier as compared
to a decision tree.

Software classification: Every day, there are many
software source code uploaded on the internet so, the
web now days contains different sets of source codes
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which can be reached by using source code web sites
such as SourceForge, Plant Source Code and Free Code
(Korvetz et al., 2003). Software classification plays a role
in the field of software reusability (Poulin and Yglesias,
1993). For instance, 70% of software development
budgets are spent on software maintenance so, the need
of classifying the software to a particular type became an
umportant topic to help in making accurate decision on
code changes (Phillips and Black, 2003). Software
classification helps to order software components in one
repository into specific groups. With this, similar
components can be grouped in the same category
depending on the functionality of these components
(Merkl, 1995).

Code metric histograms and genetic algorithms have
been used to develop the Author Tdentification Software
that identifies the original author (Lange and Mancoridis,
2007). About 14 variables have been specified such as the
way of typmg the name of the functions and code
specifications. Also, software metrics were used to
portray specified variables into histograms and later
studied the histograms to identify the author (Lange and
Mancoridis, 2007).

Recent research that also utilizes software metrics in
source code classification is reported by Yusof and
Ramadan (2010) and Lerthathairat and Prompoon (2011).
In the former research, the researchers classify source
code programs using classifiers included in WEKA. Three
software metrics were used to automatically classify
software packages, namely the Line of Codes (1.OC),
MeCabe’s Cyclomatic Complexity (MVG) and Weighted
Methods per Class (WMC1). On the other hand, the
research presented in Lerthathairat and Prompoon (2011)
focuses on software metrics and fuzzy logic to improve
code quality with refactoring techniques. They classify
bad smell, clean code and ambiguous code.

To classify source code programs into categories,
existing software classification approach also utilizes the
Comments and specification, source code variables and
Readme files (Korvetz et al., 2003). Another research done
m software classification is discussed in Jianhui (2008).
They classify malicious samples into categories using
three phases: Analyzing an object, Represent and store
the knowledge and self learmng from the new objects.

Latent semantic indexing: Latent Semantic Indexing was
proposed by Deerwester et al. (1990) and is a method that
integrates vector space model and Smgular Value
Decomposition (SVD). LSI reduces the vector space by
creating a subspace of the matrix dimensions in order to
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remove noise and redundant terms. The reduced space
presents a meaningful association between terms that in
turn relate document (Kosala and Blockeel, 2000). The first
step is to index frequently occurring termsin a term-
document matrix and compute Singular Value
Decomposition (SVD) from the original k-dimensional
term-document matrix. SVD 1s a matrix decomposition
method commonly used for data analysis. The original
term-document matrix, X is decomposed into several
matrices so their features can be revealed, for example

document-document relationships. The decomposition is

expressed as:
XEVD) =T g Sy D s
Where:
T = A left singular vector representing a term by

dimension matrix

A singular value dimension by dimension matrix

A right singular vector representing document by
document matrix (Kontostatlns and Pottenger,
2003)

The decomposed matrices are then truncated to a
dimension less than the original k-value and the orginal X
matrix approximated in the reduced latent space which
better
terms compared to the original k-dimension document

represents semantic relationships between
space.

A research that utilizes LSI in document classification
can be seen in (Kosala and Blockeel, 2000). They extend
the use of existing L3I by mntegrating mformation on the
document ontologies. Such an approach is believe to
improve knowledge extraction from web resident
documents. Similar, approach is taken in the work
nevertheless, utilizing  structural
information of terms contained in the program source

code. And this information is incorporated in a term

researchers are

weighting scheme.

In the research done by Li and Park (2007) they
construct document classification systems using artificial
neural network that 1s itergrated with LSI. The
experimental evaluations show that the system training
with the LSI is considerably faster than the original
system training with the Vector Space Model and that the
former yields better classification results. There are two
differences between our work and theirs. First, researchers
are using L.5T independently and second we are utilizing
LSI on a semi structured document. Hence, terms
contained in the document may have different

weighting.
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A recent research on L3I in document classification
is as reported by Liping ef al. (2010). They proposed a
compact document representation with term semantic
units which are identified from the implicit and explicit
semantic nformation. The wimplicit semantic information 1s
extracted from syntactic content via TSI while the explicit
semantic information 1s mined from the externalsemantic
resource (Wikipedia).

There is also an issue in Utilizing Vector Space
Model that is the term weighting. This 1s to assign weight
to term for a document so that the assigned weight
reflects the contribution of the term in differentiating the
document from other documents existing research such as
Zaman and Brown (201 0) utilizes available term weighting
schemes such as the Raw Frequency, Tf-Idf and Log
Entropy.

MATERIALS AND METHODS

The architecture of the LSI classifier 1s illustrated in
Fig. 1. There are four processes involved: data collection,
data preprocessing, matrix generation and Sngular
Value Decomposition (SVD) generation.

Data
gather 100 programs of neural network and k-nearest

Source code II

programs

collection: TIn the first process, researchers

Data collection

!

Data preprocessing

| Parser I_’l Stemmer |

List of content
terms and programs

Y

Matrix Generation

Term-program
generator

Term weighting
generator

Weighted term-
program matrix

\ 4

Singular value decomposition generation

Fig. 1: Architecture of LST with weighted term-program
matrix
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neighborhood, respectively from various repositories
(SourceForge). These programs are then stored in
separate folders. From the obtained programs, researchers
only include 90% of the programs while the remaining 10
programs from each category will later be used as the
testing dataset.

Data preprocessing: In order to extract the functional
descriptors terms (terms contained in the source code
program), researchers utilizes a code parser that 1s able to
extract each term separately from each line in the program.
Currently, the parser operates on 2 programming
langauges which are the C and Java language. Prior to
utilzing the extracted term, researchers performed 2
other sub-processes. Fiust, we remove the commoner
morphological and inflexional endings from words in
English. This 1s known as stemming and is undertaken
based on the Porter Stemmer algorithm (Porter, 1980).
Upon completing the stemming process, we discard
common adjectives (such as big, late and lugh), frilly
terms (such as therefore, thus, however), terms that
appear 1n every source code program and that appear in
only one program file.

Using the list of content terms and programs, we later
generate aterm-program matrix. This matrix represents a
very large grid with programs listed along the horizontal
axis and content terms along the vertical axis. For each
term in the list, we go across the appropriate row and put
1 1n the column for any program where that term appears.
If the term does not appear, we assign 0. We then obtain
a numerical grid with a sparse scattering of 1.

In order to better represent the extracted terms, we
also employ the local and global weighting. Terms that
frequently appear in a program and are at specific location
(for example a term found as a class name is more
important compared to the one found in a comment
statement) are given a greater local weight than terms that
appear once. We use a formula calledlogarithmic local
weighting to generate the actual value. On the other hand,
the global weighting applies to the set of all programs in
the collection. Such a weighting indicates that terms that
appear in only a few programs are likely to be more
signmficant than terms that are distributed widely across
the collection. In this research, we employ the nverse
document frequency to calculate global weights.

Singular value decomposition generation: Once the
weighted term-program matrix is constructed, we need the
Singular Value Decomposition (Golub and Van Loan,
1996) of this matrix in order to construct a semantic vector
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space that can be used to represent conceptual term-
program associations. Such decomposition projects the
large multidimensional space down into a smaller number
of dimensions. In doing so, terms that are semantically
similar will get squeezed together and will no longer be
completely distinct.

Evaluation: In order to evaluate the LSI classifier,
researchers compare its performance agamst a LSI
classifier that only includes information on term frequency
while calculating its weight. Later, a comparison against
the classification made using decision tree C4.5 is also
performed. A total of 10 source code programs from both
Neural Network and K-nearest neighborhood categories
(which were not used in constructing the 15T matrix) are
utilized as the testing dataset.

Precision and recall are the two measurements used
to evaluate the classification accuracy. Precision is the
proportion of relevant mstances in the results returned.
For instance if the precision is 0.72 then it means that 72%
of returned mstances were relevant. On the other hand,
recall values represent the ratio of relevant instances
found to the total of relevant instances (Pumpuang ef al.,
2008).

RESULTS AND DISCUSSION

In the first experiment, results of precision and recall
for both categories of programs are shown in Table 1 and
Table 2. Both of the tables contain results obtained using
LSI with structural and frequency term weighting and LSI
with frequency term weighting. It can be seen that the
utilization of structural information (location of where the
terms are extracted from) is beneficial as it produces
higher precision and recall values compared to the one
using only frequency information. The average precision
value for KNN programs when both structural and
frequency mnformation 1s utilized 15 0.79. This value 15 0.01
higher to the one obtained using only frequency term
welghting. On the other hand, in classifymng NN
programs, the proposed LST classifier outperformed
the precision generated by the frequency weighting LSI
n 7 queries.

Upon obtaining results as shown in Table 1 and 2,
researchers performed a comparison between LSI with
structural and frequency term weighting and decision tree
C4.5. Result for the said comparison i1s shown in
Table 3 and 4. Table 4 shows the precision and recall for
dataset involving neural network programs while Table 2
depicts the related values for k-nearest neighborhood
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source code programs. In all of the testing programs, 15T
has generated at least equal precision with C4.5 except for

Table 1: Results between structural frequency weighting and frequency
weighting for neural network programs

Structural_frequency weighting Frequency weighting
Programs Precision Recall Precision Recall
8]} 0.60 0.80 0.50 0.75
Q2 0.60 0.80 0.50 0.74
Q3 0.80 0.85 0.70 0.59
Q4 0.80 0.85 0.60 0.79
Q5 0.70 0.68 0.80 0.72
Qo 0.80 0.79 0.70 0.75
Q7 0.90 0.83 0.80 0.80
Q8 0.50 0.83 0.50 0.81
Q9 0.70 077 0.70 0.71
Q10 0.70 0.78 0.60 0.78

Table 2: Results between structural frequency weighting and frequency
weighting for k-nearest neighborhood programs
Structural_Frequency weighting  Frequency weighting

Programs Precigion Recall Precision Recall
Q1 0.90 0.92 0.80 0.90
Q2 0.80 0.79 0.80 0.75
Q3 0.80 0.85 0.80 0.86
Q4 0.80 0.85 0.80 0.83
Q5 0.70 0.71 0.70 0.70
Q6 0.80 0.84 0.80 0.83
Q7 0.90 0.93 0.80 0.90
Q8 0.60 0.75 0.70 0.74
Q9 0.80 0.84 0.80 0.82
Q10 0.80 0.84 0.80 0.85
Table 3: Precision and recall for neural network programs

LsI C4.5
Programs Precision Recall Precision Recall
Q1 0.60 0.80 0.50 0.75
Q2 0.60 0.80 0.50 0.74
Q3 0.80 0.85 0.70 0.59
Q4 0.80 0.85 0.60 0.79
Q5 0.70 0.68 0.80 0.72
Q6 0.80 0.79 0.70 0.75
Q7 0.90 0.83 0.80 0.80
Q8 0.50 0.83 0.50 0.81
Q9 0.70 0.77 0.70 0.71
Q10 0.70 0.78 0.60 0.78

Table 4: Precision and Recall for K-nearest Neighborhood Programs

LSI C4.5
Programs Precision Recall Precision Recall
Q1 0.90 0.92 0.80 0.90
Q2 0.80 0.79 0.80 0.75
Q3 0.80 0.85 0.80 0.86
Q4 0.80 0.85 0.80 0.83
Q5 0.70 0.71 0.70 0.70
Q6 0.80 0.84 0.80 0.83
Q7 0.90 0.93 0.80 0.90
Q8 0.60 0.75 0.70 0.74
Q9 0.80 0.84 0.80 0.82
Q10 0.80 0.84 0.80 0.85
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Fig. 3: Recall-1.ST vs. C4.5

Q5 in Neural Network and Q8 i K-nearest neighborhood
domain. We also illustrate the average of precision and
recall values in Fig. 2 and 3, respectively. In both figures,
it is noted that the proposed L.SI generates a higher
precision and recall values compared to C4.5.

CONCLUSION

In this research, researchers present the use of Latent
Semantic Indexing that operates on terms extracted from
source code programs. In addition, researchers utilize
struchural information contained in a source code program
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in calculating the term weighting. Such an approach is
proven to help in producing a better classification.
Furthermore, the use of LSI as a classifier 1s a better
choice compared to a decision tree such as C4.5.

However, more research can be done to improve the
classification accuracy of LSI. This includes the use of
other structure descriptors of source code programs. This
includes the relationships between objects or source code
files for a particular application. In addition, focus can
also be put n utilizing swarm computing approach in
identifying term similarity.
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