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Abstract: We introduce a new calculation method to compute the electron transport properties in
semiconductor devices. Using the relaxation-time approximatior, the Boltzmann transport equation for electrons
has been solved to calculate the thermal energy flux, electrical conductivity, seebeck coefficient and thermal

conductivity.
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INTRODUCTION

To carry out calculations of the electronic transport
properties of in semiconductor material and devices it is
necessary to solve the Boltzmarm transport equation.
There are many different techniques for the solution of
the Boltzmamm equation when the applied field 1s
sufficiently low. The use of numerical calculation to solve
the Boltzmann equation has been described and reviewed
elsewhere (Rode and Gaskill, 1995; Moglestue, 1993,
Tsen et al., 1997). However, in more general cases the
Boltzmann transport equation 1s often exceedingly
difficult to solve directly.

By contrast, it 1s although,
computionally intensive, to simulate the trajectories of
individual carriers as they move through a semiconductor
under the influence of the applied field and the random
scattering processes.

Indeed, much of the understanding of high field
transport in bulk semiconductors and in devices has been
obtained through the use of such a method, Monte Carlo
simulation (Ridley, 1997, Brooks, 1951; Jacobom and
Lugli, 1989; Madelung, 1978). The Monte Carle method
allows the Boltzmann transport equation to be solved
using a statistical numerical approach by following the

relatively easy

transport history of one or more carriers (particles),
subject to the action of external forces such as an applied
electric field and the intrinsic scattering mechanisms. In
this commumcation we present calculations of electron
transport charactersitics in low electric field application.
We demonstrate the effect of low electric field on the
electron transport properties in these materials.

CALCULATION METHOD

Consider the distribution function of electrons is f
and the mumber of electrons with an energy between E
and E+dE 15 f D (E)dE. Since, the electric field, temperature
gradient and concentration gradient are small, these
electrons will have almost the same probability to move
toward any direction. Also because the solid angle of a
sphere is 41, the probability for an electron to move in the
(0,p) direction within a solid angle d€) = sinBdBde) will be
dQ/4m. A charge q ( = —e for electrons and +e for holes)
moving in the (0,¢) direction within a solid angle d{}
causes a charge flux of qvcosf and energy flux Evcosf in
the 7 direction where dQ is defined as the angel between
the velocity vector and the positive 7 direction with a
range between 0-7. Hence, the charge flux and energy flux
in the 7 direction carried by all electrons moving toward
the entire sphere surrounding the point are, respectively:

(fD(E))(gvcos8)dE

I - Iﬁ
4 47': E=0 (1)

= j idq;j sinfcos0do [ D(E)qvdE
=0 an 8=0

E=0

4 E=0 (2)
am 1
= [ —do j smeoosedej fD(E)EvdE
$=0 4n B=1 E=0
With the relaxation-time approximation, the

Boltzmann Transport Equation for electrons take the
following form:
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where, q = —e for electrons and +e for holes. For the
steady state case with small temperature/concentration
gradient and electric field in the 7 direction only, the
variation of the distribution function m time is much
smaller than that in space or:

E<<\7-Vf
ot

So that, we can assume:

Mo
o

The temperature gradient and electric field is small so
that the deviation from equilibrium distribution f; is small
1e., f-f=<f,, Vf =Vf, and:

of ofy _of dE __of,
% 0p OEdp OE

With these assumptions, Eq. 3 becomes:

£ -f

T

- of
Ve[Vf +qE—L]= 4)
ve[Vf, +q aE]

The equilibrium distribution of electrons is the
Fermi-Dirac distribution:

- 1
SR sy
+1
Cen ) )
1 E-
= s M= =
exp(m)+1 kT

Where:

i = The chemical potential that depends
strongly on carrier concentration and weakly
on temperature

Eandp = Measured from the band edge (e.g., E. for
conduction band)

This reference system essentially sets BE; = 0 at
different locations although the absolute value of E.
measured from a global reference varies at different
location. In this reference system the same quantum
state k = (k, k;, k) has the same energy:
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E(k) = B(k) - E,
2m

at different locations. Hence, this reference system yields
the gradient:

VEkK)=0

simplifying the following derivation. If we use a global
reference level as the zero energy reference point, the
same quantum state k = (k, k,, k,) has different energy:

Pkl k+K
—( = i Z)-*—E

Edk) = >

C

because E. changes with locations. In this case,
VE(k)=VE. #0, making the following derivation

somewhat inconvenient. However, both
systems will yield the same result. From Eq. 5:

reference

o, dfjom df 1

9E dnoE dnk,.T

or
a1 6)
dn JE
From Eq. &:
Vi, = %vn = kBTaiVn (N
dn JE

Also because VE(ky=0 for the reference system
that we are using:

vn=—1 (VEE) -vw-EHer
T kT ®
- —LVM _E- tt VT
kT = kT
From Eq. 7 and &
of, E-n
VE =20yt o Py 9)
0T Tog VR VD)
Combme Eq. 4 and 9, we obtain:
V-[fVufiE_“VT+qE]%:—f”_f (10)
JE T
Note that:
E =— V'qjE (1 1)

where, @, 13 the electrostatic potential (also called
electrical potential which is the potential energy per unit
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of charge associated with a time-invariant electric
field E ). From Eq. 10 and 11, we obtain:

f,-f

- E-n of, -
Ve[-Vu-— VT —qvg,]ot=2—~ (12
[~V T q we]aE
From Eq. 12, we obtain:
f=f —Te[- VCD——ETMVT]— (13)

where, @ = pt+q@, 15 the electrochemical potential that
combines the chemical potential and electrostatic
potential energy. This definition of the electrochemical
potential 15 the defimition in Chen’s text multiplied by a
factor of q. Both definitions are used in the literature with
the definition here are used more widely. Electrochemical
potential 1s the dnving force for current flow which can be
caused by the gradient in either chemical potential (e.g.,
due to the gradient in carrier concentration) or the
gradient in electrostatic potential (1.e., electric field). When
you measure voltage AV across a solid using a voltmeter,
yvou actually measured the electrochemical potential
difference A® per unit charge between the two ends of
the solid 1e., AV = A®/q. If there is no temperature
gradient or concentration gradient in the solid, the
measured voltage equals Ag,. In the current case all the
gradients and E are in the Z direction so from Eq. 13:

f—f —tvooso[- W _EMAT __ p 196

dz, T dz dE (14)
—f, —tvcosg 0P _EondT,of

dZz T dz 9E

Combine Eq. 1 and 14, we obtain the charge flux and
energy flux, respectively:

I, = T—d(bj sinBcos6do I f,D(E)qvdE +

¢,—n E=0
in
I Ld(j) I sinBcos’Bd6 (15)
b= =0
[ 2pEquio® BRI g g
E=0 oE dz T dz
And:
n b3 -
1 .
Iy, = Ingdcbe.[nsme cosGdGE[nqu(E)EVdE +
an 1 T
I —do I sinBcos® 6dH (16)
420 i 2,
= of, E-udT
D(E)EV (%+ Lopdl gE,)dE
-, O T dZ

Note that the first term in the right hand of Eq. 15 side
1s zero and the second term yields:

== _[ UD(E)qu
(17)
du+E udT

‘@z

—qE YdE
dzqz)

[t L D(E)Evit
3E ,OE

(% E-ndl g yae
T dz

Ez —

(18)

Note that:
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E =—mv’ (19)

Use Eq. 17 to eliminate v in Eq. 19, we obtain:

Z

3—‘1 @B+ S g e
(20)

DEET -+ 7 ME

i
=i

of,
a_
o, dd E-udT
JE T

2 j ”D(E)ET o
dp. E—-pdT
dz

( —qE,)dE

The energy flux from Eq. 21 can be broken up into
two terms as following:

I afﬂ - D(EE? o BT e ar
= am 9 &z T dz
2 7 oof E-udT
= [ LoDE)EE -we S _gEdE +
. j o DIEIEC u)( g
2 7of du E—udT
= D(E)ET S _gEdE
u3 | o6 (E) ( o !
5 -
:3—1 D(E)E(E - )t
d_“' —Md_quEZ)dEjL&
&z T
_2 J- of, DEIEGE - u)t(dq) E- udT)dE+uJ
q

(22)

where, I, 1s the current density or charge flux given by Eq.
22. Attemperature T = 0 K, the 1st term in the right hand
side of Eq. 21 18 zero, so that the energy flux at T = 0K 1s:
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Iy, (T=0K)= Wy (23)
q

Because electrons do not carry any thermal energy at
T = 0K, the thermal energy flux or heat flux carried by the
electrons at T # O 1s:

1, (D=1, (T)=1, (T=0)

(24)
= j 2 DEIB(E -+ = TaE
Equation 23 and 24 can be rearranged as:
T L, 14y O (25
q dZ dz
1dd aT
T, :LZI(—fEﬁ Lzz(—ﬁ) (26)
Where:
2 o
T | % E)EWE 27)
3m J, oE
2q Fofy
= D(E)E(E - WtdE (28)
Y 3mT 2 0E (B)ECE 1)
2
q j ”D(E)E(E WTdE (29)
=TL,
2 G oof,
== D(E)E(E — w)*tdE (30)
® 3mT 2, 9E (EYECE —u)

ELECTRICAL CONDUCTIVITY

In the case of zero temperature gradient and zero
carrier concentration gradient:

d_T:() and d;"":()
dz dz

Equation 24 becomes:

IomLy (2 dq]) Ln(fl d“+ E)=L,E, (1)
qdz
The electrical conductivity 1s defined as:
!, ofy (32)
ozE—Z: L= j D(E)EtdE
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SEEBECK COEFFICIENT

In the case of non-zero temperature gradient along
the 7, direction, a thermoelectric voltage can be measured
between the two ends of the solid with an open loop
electrometer i.e, j, = 0. Hence from Eq. 30 we obtain:

1dd
z —Lu(* )+ L12(7 ) 0 (33)
Therefore:
d
dz | qL, (34

dT

dz

i

As discussed earlier, the voltage that the electrometer
measure between the two ends of the solid is AV = Ad/q.
Similarly, dV = d®/q.

The Seebeck coefficient is defined as the ratio
between the voltage gradient and the temperature
gradient for an open loop configuration with zero net

current flow:

av do
go_tdz)__11dz ) L,
d_T q d_T L,
dz iz
1 Igg D(EJE(E —)wlE
S qT af (35)
4 j 24 D(EYEWE
E:D
j o EEE
L _ E=0 aE
qT ofy
D(E)EtdE
j 35 D)

Combimne Eq. 33-35, we can write:
I = cs(—l@) + GS(—d—T)
z q dz dz

The scattering mean free time depends on the energy
and we can assume:

T=T,E (36)
where, T, 18 a constant independent of E. When E 1s
measured from the band edge for either electrons or holes,
the density of states:
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2m iz 5
(20) _ iz (37) g s
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2n'h ] P (43)

D(E) =
Fop (M)

Combine Eq. 35 and 37:

Seebeck coefficient for metals: For metals with

of,
1 I aEn D(E)E wE 1 = wkyT ==0, the Fermi-Dirac integral can be expressed
5= uT M *af— 1n the form of a rapidly converging series:
4 | o DIE)EUE
E=0 (38) 1 g
- E )= If@dc———j “c 'dg
J‘ o gareriizgp
1 . oE ( M)
B ErT 1 Fof = (C-m"
qT af 41/ ==z n d
aDEHH “dE n+1-!8§ 1; ace m! ¢
- o (44)
: . . < . 1 Sof T]HHJF(H*I)”H(C*T])
The mtegrals m Eq. 38 can be sunplified using the - “lo -y az
n+1g 9 +(n+1)nn“’1Tn+

product rule:
n+l 2

o7
_ ™

jaf“EdE fE\U—sIfE“dE 1 P
E=0 a E=0 (39)
_ ]3 £ EE If we use only the 1st two terms of Eq. 44 to express
B R the two Fermi-Dirac integrals in Hg. 43, we obtain the
following (q = —e for electrons in metals):
Using Eq. 38 to reduce Eq. 39 to: s
Kk T+ 5 E (M)
o g =__"F -
(r+5/2) | LEE q 3
S=——|u- E‘[D ' (40) r+5 Fom
T -
Tl (re32) [ fEaE 3 5
= nrt+— Fr fz(ﬂ)f r+— E+3!2(n)
E=D :k_B 5 | >
e 3
The two integrals in Eq. 40 can be simplified with the (r + E]Frmz('n)
reduced energy £ = F/ky,
- = n I_+é n”er r+l nr—uzﬂi _
[ 6 (EWEE = (kT [£,(GmCdg 2) .3 2 6
E=0 o (41) 2
=(k, TV Em, n=p/k,T (45)
r+5/2 2
[rﬁ—j} N +[r+3}nr+112ﬁ
Where the Fermi-Dirac integral is defined as: K T+ 2 6
2
N = :B - é ,nr+3f2
E, () = [f,&m)gdg “42) 2.3
0 2
Use Eq. 42 toreduce Eq. 41 to:
5
1 T+ 5 Fos(n)
2k kT, 3
= ( )( +1)

T 3
q r+5 F+112(TD
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This value can be either positive or negative
depending on r or how the scattering rate depends on
electron energy. We can ignore the weak temperature
dependence of p and assume p = E;, the Fermi level that
is the highest energy occupied by electrons at O K in a
metal.

SEEBECK COEFFICIENT FOR
NONDEGENERATE SEMICONDUCTORS

In non-degenerate semiconductors, p is located
within the bandgap with a distance from the conduction
or valence band edges larger than 3kBT so that:

E-u
k.T

B

={-m>3

This 1s true for both electrons in the conduction band
and holes in valence band. For holes in valence band, the
energy 1s higher at a position further down below the
valence band edge. When:

E-u
T

=L-n>3
The Fermi-Dirac integrals become:

E,(m) :Ifu(a,n)cndc

I !e p(L—n

u@m@ nhﬂ
= exp(m) j exp(~{){"dE = exp(m)l(n + 1)

c ac (46)

Where the gamma (I") function has the property:
T(n+1)= [exp(={){"dE = nl(n) (47)
o

We can use Eq. 47 to reduce Eq. 42 to obtam:

S__ki _(rJrg}exp(n)F(rJrg}

. 4 ! rJré exp(m)[’ rJré (48)
2 2

bl o]

In this equation, p is measured from the conduction
band edge EC for electrons and from the valence band
edge E, for holes. Located within the bandgap, p is

negative for electrons and is also negative for holes
because the hole energy is higher when the energy level
1s moved further down. Also q = —e for electrons and +e
for holes so that, the Seebeck coefficient 1s negative for
electrons in the conduction band and positive for holes in
the valence band.

If p 15 measured from a global reference instead of the
band edge as the zero energy point, we can express Hg. 48
for electrons and holes separately; For electrons:

&:_QF@;_M+@+5/ak;q<o (49)
e
For holes:
Shzg%{u—Eg+(r+5/2ﬂ%T)>0 (50)
()

The effective Seebeck coefficient in a nondegenerate
semiconductors have contribution from both electrons
and holes 1.e.,

g_ nuS, + PRy S, (51)
niL, + pi,
Where:
nandp = Electron and Thole concentrations,
respectively
poand p, = The mobility of electrons and holes,
respectively

The mobility 1s defined in the following section on
Wiedemarm-Franx law.

THERMAL CONDUCTIVITY OF ELECTRONS

From Eq. 21:
_ldgz_h(_dl)_*_ LJZ (52)
qdz L, dz° L,

Use Eq. 52 to eliminate 4P from Eq. 21 b to obtam:

dz

L L, L dT
qu :ijz+ L, - _— (-——)
11 11 dz (53)

dT
=TI, +k (—
i E(dZ)

The Peltier coefficient I and thermal conductivity k,
are defined m the following. In the case of zero
current J, = 0 and non-zero temperature gradient along the
Z direction:



Res. J. Applied Sci., 6 (4): 232-239, 2011

L.L

12l

dT
Io=|L =
Iz [ = L, }( dZ)

The thermal conductivity of electrons:

L.L
=L Hattar
[ 2 Ll1
ot ’
( [ —“D(E)E(Eu)rdE}
E:Ua o
o By ErdE

2
e

E=0

_ 4z
k.= dT

dz

} (Lzz - L21S)

j ':;f“ D(E)E(E — w)*tdE

E=0

(54)

(55)

Equation 55 can be reduced to the following by

expanding the (E-p) term in the two integrals:

af, ’
( [ ~ED(EE rdE} )

E=0

of, D(E)EtdE

2
k, =—— Ia

E=0

j I EyEdE

E=0

(56)

For metals, S is usually very small so that from Eq. 56

k. =(L,

PR
=— D(E)E(E —u)' tdE
3T ) on (E)E(E — Wy’

~L,S)=L,,

Note that:

o,

JT

df, E—u
dn k,T°

_dfyom
dn oT

Compare Eq. 57 with Eq. 5, we can obtain:

o, T af
9E  E-poT

Combine Eq. 59 and 56:

. :% T —LD(E)E(E —w)tdE

(57)

(58)

(59)

(60)
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We can use B = mv’/2 to rewrite Eq. 60 as:

1%
k=3 5

When E 1s far away from p, f,(E) remains to be either
0 or 1 as the temperature changes, so that:

of, (E) D(EW*(E — wytdE (61)

of, (E)
oT

is non-zero only when E is close to p. Therefore, Eq. 61
can be approximated by taking v = vy and T= Ty, 1.e., the
Fermi velocity and the scattering mean free time of Fermi
electrons:

k, = %VFZT _[

(B

2 DENE - dE

(62)

E=0

—
—_

L -
=-v.'1,C =-C,vl;

[¥S]
=
(¥

This 1s essentially the Kinetic theory expression of
the thermal conductivity.

WIEDEMANN-FRANZ LAW

From Eq. 24, the electrical conductivity is:

I 2 =
B (63)
E, 3m —, OE
of, (E)
9B

is non-zero only when E is close to p and can be
approximated to as a delta function:

e 64)
Combine Eq. 64 and 63:
o= J—Z = 2—62 T & E - WD(E)ETdE
E, 3m_, (63)
= %DE:MM’EE:M = 2762 DeliTe
We can use u = B, = mv;*/2 to reduce Eq. 65 to:
: (66)

e z
g :?DFVF TF



Res. J. Applied Sci., 6 (4): 232-239, 2011

Note that the electron concentration can be

calculated as:

£,(E)D(E)dE

=
Il
—

=

£ (E,T =0)D(E)E = j D(E)E

Il
| —

E=0 E=D (67)
E 23 2/3
f 172 1 (2
_ . _Izn EY2E = : _Izn EFafz
R 3ntl A
2 z
= gDFEF ngFM

(68)

If we use the followmg definition of electron mobility:

b=Sr (69)
m
We obtain from Eq. 68:
0 = nejp, (70)

Note that 1, is electron mobility and is different from
u that 1s chemical potential. We can use Eq. 68 and 62 to
calculate the ratio between the electron thermal
conductivity and electrical conductivity:

1.
ke EVF TFCe mcevFZ (71)
T 2 = 2
4] e 3ne
—1NT;
m

Here we have assumed that the T; is the same in
the thermal conductivity and electrical conductivity
expressions. As discussed m Chen, these two Tp terms
can be different.

Note that the electron specific heat of metals has
been derived previously as:

1,
—m'nk, T 2, 2
C=lpmk T =2 STRT g
my, my,
2k,
Combimne Eq. 71 and 72, we obtam:
g _ mVF2 T[zn_szT _ T[szzT (73)
3ne* mv,’ 3¢’
We define the Lorentz number:
'k’ _ _
L=""E = 245%0 (WQK %) 74
3e
So that, we obtam the Wiedemann-Franz law:
L (75)
a
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