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Abstract: In this study, we present investigations of certain new clarified and simple proof of the generalized
Taylor series, interms of fractional order derivatives, which 1s very helpful in approximating non-differentiable

functions.
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INTRODUCTION

Several natural phenomena lead to irregular (fractal)
models. For example, typical paths of quantum mechanical
particles are continuous but non-differentiable. Despite
the nen-differentiable structures in nature, we have few
mathematical tools to deal with.

An 1dea 1s to generalize the notation of derivative in
order to take into account non-differentiable functions.
Many attempts already exists, in particular, the so-called
fractional derivative of Riemann-Liouville, Liouville
(Adda, 1997; Samko ef al., 1993). They are all, more or
less, based on a generalization of the Cauchy formula.
Hence, there 1s no geometric idea supporting these
generalizations, explaining the difficulties of using it in
order to obtain information about the structure of non
differentiable objects. Moreover, fractional derivative are
all non local on the contrary of the classical derivative.
For example, the Rieman-Liouville derivative depends on
a free parameter, which relies on global information on the
function. The study of non-differentiable functions wvia
these operators is then difficult.

In Adda and Cresson (2000) a notation of (right or
left) local fractional derivative, was imtroduce to solve this
problem, by generalizing the classical Taylor series to
non-differentiable cases, but unfortunately, the proof of
the generalized Taylor expansion theorem is not true in
general Adda (2001). Therefore, in this study, we present
a clarified and simple proof to the generalized Taylor
series.

RIEMAN-LIOUVILLE DIFFERENTIABILITY
Let, f be a continuous function on (a, b). For

all x € [a, b], we define the left (respectively right)
Rieman-Tiouville integral at the point x by:
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The left (respectively
derivative at x is given by

right) Rieman-Liouville
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Definition: We say that the function f admits a derivative
of order O<g<] (Riemann-Liocuville) at x € [a, b] by below
(respectively above) of D, (f) (x) exists (resp. if D%, (f) (x)
exists).

Of course, different values of the Rieman-Liouville
derivative for different values of the parameter a (resp. b)
are obtained. Moreover, the derivative of a constant C €}
is not equal to zero. Indeed, we have
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These give rise to great difficulties in the geometric
interpretation of the Riemann-Liouville derivative (Adda,
1997). In particular; there is no relationship between the
local geometry of the graph of f and its derivative. We
refer to Podlubny (1999). We have
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On the contrary, we have
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The Riemann-Licuville derivative commutes with the
usual derivative if and only if f* (a) = O fork = 0...n-1.

We have also the following composition formula: let
m-1 <p<m and n-1 <q<n; then
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In general, we have no commutation between
Riemann-Liouville derivatives. Commutation holds if and
only if {f (a) =0, j = 0,...r-1 withr = max (n, m) and similarly
for the right fractional derivative.

TAYLOR SERIES EXPANSION

It 13 never intended for publication, Riemann
scratched down a generalized Taylor-formula based on
fractional derivatives, Riemann never gave any proof of
this identity, he discussed the series as an asymptotic
expansion for the special cases of expanding certain
classes of elementary functions involving the exponential
function and the bmnomial function, we give a proof of
pointwise convergence of the general Taylor-Riemann
series, the series 1s a form of fractional power series of the
form

f(z)= Y a (z—z)"
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The via fractional calculus generalized Taylor series
has down some attentions among mathematicians over
the vears, some alternate forms have appeared but our
proof here seams to be unique in generality and gives a
clarified and simplified proof.

Theorem: The (right or left) local fractional derivatives of
f, d% f(x) 18 equal to

dif(x)
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Proof: Adda and Cresson (1999).

Theorem: Let 0<<1 and f be a continuous function such

that d°, £ (v) exist 0 = # then we have

f(x) =f(y)+ oﬁ.% [ox -] +R (x,y) 4

where
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The proof of thus theorem use the fact that the
composition of the Rieman-TLiouville fractional derivatives
of A, (%) = f (x)-f (a), where a 13 the parameter equal to
A, f(x), which 15 not true in general. Therefore, we give a
clarified and simplified proof of the following theorem:

Theorem: Let £ (x) = (z-b) dh (z), where 8 >-1, h(z)is a
function, which is analytic in some open set containing
the disk {|z-a|<r}for some >0 and b belongs to the mnterior
of this disk, i.e |b-al<r. We then have for every o € R
and every Z on the circler |z-a| = |b-a, z # b.
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Here in the right hand side, for (z-a)*", we choose the
branch, which is given by arg (b-a)< arg (z-a)< arg
(b-a) + 27, where, we have fixed -m<arg (b-a)<m.

Proof: For convenience, we write ¢p= arg (b-a), where we
require -w<¢p <. We express 7 on the circle |z -a| = |b-al,
z#basz=a+|b-ae® ¢ ¢ [d, ¢ + 2r] and expand
f(z)/(z-a)" in a Fourier’s series.
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By Fourier’s theorem Manager (1983) and our
conventions about the branches, the coefficients a, are
given by
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Note that the function ¢-f (at+b-ale™)/|b-a".e®. Has
limited total fluctuation in a neighborhood of ¢ = arg (z-a),
since z# b; hence by Fourier theorem the right hand side
in (z) is indeed convergent and the equality holds.

On other hand, we consider the Cauchy-type
functional mntegral (Olver, 1954) of order o +n of f (2) at
the point ¢

O+2n

[{o+n+1) J-
21

flat|b-ale )mﬁ‘bfa|ie‘ed8

+: —
DX fa) = |b _ a‘ ahnH G (n+)8

[:]

B+ ol
_Datntl I f(a+|b+ ale )dE)
7 s [b—af"T et

Comparing this with Eq. 7, we see that
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So by inserting this in Eq. 6 and noticing (z-a)* [b-af*
e = (z-a)** we obtain
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On the circle |z-a| = |b-al, b#z, which proves the
theorem.

Tn Adda (2001), they obtained a simplified equivalent
definition of local fractional derivatives. Once of the most
umportant tools of numerical analysis 1s (Taylor’s theorem)
and the associated Taylor series. It gives a relatively
simple method for approximating and computing functions
f (%) by polynomials.

RESULTS AND DISCUSSION

Our main result base on theorem (3), in which, we
discovered a simple method for approximating and
computing f (x) by Taylor series polynomial. From few
years ago many interesting applications of the so-call
Fractional Taylor Series (FTS) have been published
under the name (FTS) are known several different
definitions of the generalization of the ordinary Taylor
series expansion. this fractional series expansion have
been widely applied mainly in optics and signal
processing theory.

CONCLUSION

¢ A clarified and simple proof to the generalized Taylor
series, which present in the theorem (3), use the
fact that the composition of the Rieman-Liouville
fractional derivatives of A, £ (x) =f(x) - f (a), where a
1s the parameter equal to A, £ (x)
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¢+ A simple method for a computing f (x) by Taylor
series
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