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On the Response of Damped Rectangular Plates to Uniform Partially
Distributed Moving Masses
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Abstract: The response of damped rectangular plates to uniform partially distributed moving masses is
investigated. Using a series solution for the dynamic reflection in term of the normal modes, the partial
differential equation governing the behaviour of the model is reduced to an ordinary differential equation. This
was solved using finite difference scheme. The results were presented in graphical and tabular forms.
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INTRODUCTION
Damping may be defined as the dissipation of
energy in motion and the consequent reduction or
decay of the motion Hence damped vibration is any
oscillation in  which the amplitude of the oscillatory
quantity decreases with time. Damping 1s usually due to
friction. Tt is well known (Gbadeyon and Usman, 2003),
that damping becomes important when the need to have
a thorough wnderstanding of the control and mechanical
response of vibrating structures arises.

In this study, the problem of determimng the dynamic
response of a rectangular, damped, elastic plate carrying
uniform partially moving load is investigated. The elastic
plate 1s assumed to have uniform cross-sectional area.
The effect of both rotatory inertia as well as shear
deformation 1s assumed negligible. The moving partially
distributed load is also assumed moving at uniform
velocity. A constant damping coefficient 13 used
throughout the analysis. There are different types of
damping, however, viscous damping whose coefficient is
assumed to be directly proportional to the mass
distribution of the system s
corresponding one-dimensional problem was earlier
studied in Gbadeyon and Usman (2003). An asymptotic
analysis of eigen frequencies of uniform beam with both

considered. The

structural and viscous damping coefficient has also been
carried out m Hankum and Goong (1991) and Huang
(1985). Also the analysis in this study is for simply
supported plates. However, it also holds for any other
boundary conditions that are of practical mterest such
as damped plates etc. Numerical examples are also
presented.

THE MATHEMATICAL FORMULATION

The equation governing the response of damped,
1sotropic rectangular plates according to the classical
theory of elastic plate is Timoshenkos and Woniowsky
(1959)

DV Wy, ) + M, W, (X, y,1) (1)
+2M, 7, W, (X,y.t) = P(x,y.t)

Where,
3
D= @
12(1—v)
V=V'VIW=W,__ (x,y,0)+ 3)
W, (XY D+ W, (X vt
W(x,y,t): The deflection of the plate.
h : The thickness of the plate.
E . The Young’s modulus.
U : The poisson’s ratio.
Xy : The rectangular Cartesian coordinates in the
plane of the plate.
M, : The mass density per unit area of the plate.
t : The time.

P(x, y.t) is the applied moving load on the plate, v is
the viscous damping coefficient, (,x) and (,t) denotes
partial differentiation with respect to x and t, respectively.

It should be noted, however, that Eq. 1 was based on
the assumption that:

¢ There is no deformation in the middle plane of the
plates. This plane remains neutral during bending.
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+  Points of the plates lying initially on a normal-to-the
middle plane of the plate remain on the normal to the
middle surface of the plate after bending.

¢ The normal stresses in the direction transverse to the
plate are negligible.

In the case of distributed time load, Eq. 1 may be
written as

D(W, . +2W,_ +W, J+MW,,

(Y, 0+ 2ZM YW, (X, v, 1)

1 AW
_?[Mg_M & J @

[H(x—\m Y)-H(x-vt- rzﬂﬁ(y—yL)

Where, 1 1s the length of the load, H(x) 1s the Heaviside
unit function, 8(x) 1s the Dirac-delta function, v 1s the
velocity of the moving load, g is the acceleration due to

gravity, M, 1s the mass of the load and also,

Wy, 0
dt*
LY OHVW, (X, Y.L

=W, (x,y,t)+2vW, (5)

The pertinent boundary conditions are:

W0, y,t)=0=W,_ (0,y,1)

Wia,y)=0=W,_ (a vt
WX 00)=0=W, (x0,1

Wb =0=W, (xb1) ®

Finally, the imitial conditions are
WXy =W, (xy.0)=0 (7)
METHODS OF SOLUTION

Assuming a separation of variables solution in the
from of a series, namely,

WEYD=DS Qu (OW, (X)W, (¥) &)

m=1lm=1

Where, W (x) and W (y) are the fundamental mode
shapes of beams having the boundary conditions of the

plate (Hankum and Goong, 1991). m and n are the number
of contributed modes and Q.(t) are the unknown
functions of time.

By substituting Eq. 8 into 4 we have

DAW, o 2W, A W, MW, (X 9 0D+ 2My W, (X, v, t)=

%(Mzg =M, (W, (v, D+ 2VW,_ (%, v, D+ VW,__ (x,v,D))
[H(X—V’[ +y2)—(x— vt— %H Sy—y.)

Using Eqg. 8 in 9 we obtain

o)

1, 2 [Q, (D{DIW, (OW,, (7)+2W, (x)
22

motnm1 ZW, (y)+ W ()W, (00 +
M, Q. (O W, ()W, (7)4+ 2MyQ,,, (D W, COW,, ()

{ 8- MZZ (10)

{Q (W, (X)W, (¥) +2vW, (X)W, yQ,. (t)]
VW OW, () Qpn (1)

[ x-vi+ ) - (x—vt—%ﬂﬁ(y—h)

For free vibration of elastic plate we have

D{ W' ()W, (y)+ 2W, COW, () W, C0W 00
=k W, W (y)M,

Where, A, =w’' Mn =1,2,3...m=1,2,3... are
the eigenvalues for some specific boundary conditions.
Substituting Eq. 11 into 10 we obtain

M3 [Q (DA, W, GOW,, (y) M, +2MyQ,, (1)

it it W, ()W, ()+M,Q,,, (DW, ()W, ()]

M,Q,, (W, )W, (¥)+2MyQ,, (DW, (OW, (¥)
1{ ZZ[Q (W, ()W, () + VW, (x) }

T A W 0. 04 W GOW, ()0

[H(X*V‘FF%)*H(X*W*%)} 8(y—vy.)

(12)

Multiplying both sides of Eq. 12 by W(x) Wi(y),
taking the double integrals of both sides along the
length and width of the plate and using the
properties of orthogonal functions W, (x) and W (y) we
have

923



Res. J. Applied Sci., 2 (9): 922-926, 2007

A aMQ, (D+2aM yQ, ()
oM, O (0= Mg [ W0

AR

Bly—y )+ 3 > MQ,, (1)

n=1m=1

juawn(x)w(x)HH(X_w%]_H[X_W_%H

dx [T W, () W (7)8(y - v.) -

2Q,.v jjw,xx)wx){H[x— W +;]— H[X—W—;ﬂ
dx jubwm(y)wj ¥I8(y-y.)

32 Qm(t) J'Dawn(x)w(x) {H(XV‘}F ;j - H(X
[ W)W sy -y,

(13)
Equation 13 may be simplified as

. . 1
Qo (04 27Q, (D42, Q,, (1) = Mr

P W, ) [ W o
MM Qnm (OW, (YL)WJ(YL)

Z;‘ j:;w (x) W (x)dx+2vQ, (DW, (v,) W, (y,)

n=1m=1

W W 0 v, (OW, () W3,
7w oW, (o
(14

Equation 14 13 the generalized ordinary coupled
differential equation to be solved for some specific
boundary conditions of the plate.

THE METHOD OF SOLUTION FOR SPECIFIED
BOUNDARY CONDITIONS

For simply supported rectangular pates, the edges
conditions can be expressed as

FWO,y.t)

—o (13
6}{.2

W(0,y.t)y=W(a,b,t)=

O*W (a,b,t)
GXZ
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Wix,0,0=W(x.b,t)= =p (16)

IW(x,0,t) 2*W(x,bt)
2 - 2

ay
Again, the imtial conditions are

OW (%,y,0)
ot

W, y,0)= =0 (17)

The normalized deflection curves for simply
supported boundary conditions for a rectangular plate of

dimensions a by b Gbadeyan and Dada (2001 ) is:

{ z . nnx}{ z . mﬂy}
"f sin—— ‘,f sin—=
a a a b (18)
2 mmy
W, (X)W, ——sin——sin——
(X)W, (y)= JE b
n=1,23 ..,m=1,2 3, .. where unity is the

normalized constant. The eigen values are obtained by
substituting Eq. 18 mto 11 which yields
2

2
n® m
Amm = Dn’ {—24——
a

3

(19)

2

The exact governing equations for simply supported
rectangular plate 1s obtained when Eq. 18 1s substituted
into the generalized governing Eq. 13 as

Qo (04270, (04 A, Q. (D)=

1 | 2ZM,g Sinlﬂij . mxdx
M| +fab b = a
- 2 . . .
ZZ sin YL gin L j sin T gin ™ dx
n= b b fl d a
vam(t)sm J YLI cos % sm@dx
b = a a
411 s viQ, (t)sin 2L 1angLJ‘ sin o smﬂdxﬂ
o a a
(20)
Where,

0 0
=vt——ande,=vt—
2 2

Equation 20 is further simplified by evaluating the
integrals as
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Qu (0+27Q,,, (D42, Qu ()=
L AaMga g iy smﬂsmE
My \/Emt a 2a
2
S22 ) mmy, . imy,
- [ @} sin sin b
_MZZZ
n=lm=1| = d dl'nv-t . dl'ﬂ:['
Q. (1) —oos| — |sin| —
md, a 2a
_— cos[p‘ Jsin{p‘ B son VO, (t)sm sm&
p, a Za b
iSin(—plm-t}sin (Plﬂf]_ a n[—d‘mjsm [d‘—m]
P a 2a / dm a 2a
4ﬂ n’ viQ, . (t)sm sin iy, cos(d1 ]S'nd‘ﬂr
b | nd a Za
2 cos [p‘mjsm [p‘ ‘DH
P, a Za
21
Where, d, =n-1,p,=n-+1andn# 1and
Qua O+ 21Q,, (D42, Q. ()=
L 4M2gasmmyL sin ™ i 1T
M,r| vfabnn b a 2a
4 mny, . myL
- Esm b Q (t)
7;; [r a {2mwt}. [HMD
————cos sin| —
2 2Zm a a
&m vam (t)sm ™ in ) ( sm[znszin[mD
b | 2nm a Za
a
Ly n’ iy, |2 2m
LALI Q.. (t)sm L gin 7L ,n=i
b (2mrvtj. (n’rﬁr]
sin| —
a a
(22)

Clearly, closed form solutions to Eq. 21 and 22 are not
possible. However, one can seek numerical solutions. The
numerical method considered s a central difference

method.
RESULTS AND DISCUSSION
In this study, mumerical results are presented in
graphical and tabular forms. The effects of viscous

damping and other parameters such as velocity of the
moving load were discussed.
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Table 1: Deflection W(a/2, b/2) in (rmim) for various r

Time (ts) r=0.05 r=0.5 r=0.1
0 0 0 0
0.0667 0.1338 0.1337 0.1333
0.1333 0.2055 0.2053 0.2047
0.2 0.2908 0.2905 0.2896
0.2667 0.3688 0.3684 0.3673
0.3334 0.4438 0.4434 0.4420
0.4 0.5137 0.5132 0.5116
0.4667 0.5780 0.5774 0.5756
0.5334 0.6360 0.6353 0.6334
0.6 0.6870 0.6863 0.6841
0.6667 0.7304 0.7297 0.7274
0.7334 0.7659 0.7651 0.7628
0.8 0.7930 0.7922 0.7897
0.8667 0.8114 0.8105 0.8080
0.9334 0.8209 0.8200 0.8175
1.0001 0.8214 0.8205 0.8180
1.0667 0.8129 0.8120 0.8095
1.1334 0.7955 0.7947 0.7922
1.2001 0.7693 0.7686 0.7662
1.2667 0.7348 0.7340 0.7318
1.3334 0.6922 0.6915 0.6893
1.4001 0.6420 0.6413 0.6394
1.4667 0.5848 0.5842 0.5824
1.5334 0.5211 0.5206 0.5190
1.6001 0.4517 0.4512 0.4499
1.6668 0.3770 0.3766 0.3754
1.7334 0.2961 0.2958 0.2949
1.8001 0.2015 0.2013 0.2007
1.8668 0.0497 0.0496 0.0494
1.9334 0 0.0783 0.07810
2 0 0 0
1
0.8
Do)
)
)
E
g 041
H
|
&
02 ",
i
,’Lf
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‘0.2 L] L} T T 1
0 0.5 1 1.5 2 2.5
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Fig. 1: The deflection in mm at different time for various
values of vy
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The mathematical model discussed here in is a
rectangular plate of dimensiona=10m by b =5 m. The
other parameters have been defined as follows: Poisson
ratiov=02,E=2.109x10'Nm >, v=1.5ms” andy = 0.0,
20 and 100. The various lengths of the load are r = 0.05
0.5and 1.0

Figure 1 shows the deflection curve at the middle of
the plate for various value of yy, where yy = v. It 1s
observed that for fixed value r = 0.5, the amplitude of the
maximum deflection of the mid-span of the plate increases
with merease in yy. The absence of damping coefficient
shows higher frequency of vibration as depicted in Fig. 1
foryy = 0.

Table 1 shows the deflection of the simply supported
plate for various values of r for a fixed length yy. It 1s
observed that for a fixed value of yy, the maximum
amplitude of the deflection of the plate decreases with
increase inr.

CONCLUSION

The analysis of damped rectangular plates to uniform
partially distributed moving masses has been carryout in
this paper. The goverming partial differential equation for
the dynamic of damped rectangular plates was simplified
and reduced to a set of coupled ordinary differential
equations. The resultant equations were solved using
fnite difference method. Discussion for simply supported
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plates was presented. The result shows that increase in
damping coefficient (y) yields an mncrease in the amplitude
of the middle deflection of the plate. The effect of the
distribution of the line load on the plate was discussed.
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