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Abstract: We study a two-step Arrhenius reaction o % y%_ & ,p inthe multiple-step reaction that occurs
during decomposition and combustion processes of a precursor chemical reagent. In order to enhance safety
during manufacturing, storage and handling of the energetic materials, we revisit and analyze the equilibrium,
stability and Hopf's bifurcation of the two-variable model for combustion in sealed containers and investigate
the effect of reaction order on stability of the equilibrium solution. The numerical result of Hopf’s bifurcation

condition shows that the region of instability increases as the reaction order increases.
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INTRODUCTION

The study of solutions of mathematical equations
describing some combustion problems has attracted the
interest of many researchers (Ayeni et al, 2005;
Buckmaster and Ludford, 1992; Chan and Kong, 1995;
Derrick and Grossman, 1976, Patrick Folly, 2001;
Ganutdinov, 2001; Goldfarb et af., 1999, 2004, Golovaty,
2006; Holmes, 1990; Menikoff, 1999; Powers, 1999; Claire
and Larry, 2006). This study in general, has led to the
design of new or unproved combustion devices.

Explosives (substances that react violently with the
liberation of heat and gas) can be classified mto
homogeneous and heterogenecus. A homogeneous
explosive can be gaseous, liquid or single crystal of a
solid. Solid explosives are typically heterogeneous for
example; TNT pressed to less than full density is
heterogeneous due to the presence of voids (Menikoff,
1999). Goldfarb et al (1999, 2004), Buckmaster and
Ludford (1992 ), Powers (1999), Folly (2001 ) and Menikoff
(1999) studied explosives models and obtamed some
useful results. Holmes (1990} in his remark, stated that
explosives are generally useful for blasting, military
purposes and as propellant and that the energy released
by a chemical explosion generally results from two
exothermic reactions, one following the other in rapid
succession. The first reaction involves the decomposition
of NO, to produce N,. The second reaction involves the
combustion of carbon and hydrogen with oxygen to form

carbon IT oxide, carbon TV oxide and water. Tf large amount
of heat is released, the resulting temperature may exceed
5000°C (Holmes, 1990).

Other recent contributors include Trenham and
Forbes (2006) who studied the comparison of two and
three-variable models for combustion m sealed containers.
They established the Hopf"s bifurcation conditions for
the models and show that self sustained oscillations are
found to occur as a result of Hopf’s bifurcation. The
contributions of Derrick and Grossman (1976) were also
helpful to analyze the equilibrium and stability of a first
order ordinary differential equation.

In this study, Following the Arrhenius equation of
1889, Chan and Kong (1995) and Trenham and Forbes
(2006) new model of combustion i sealed containers are
formulated and the effect of reaction order on stability of
the model is investigated.

MATHEMATICAL FORMULATION

Following Trenham and Forbes (2006) a precursor
chemical species (reagent) A that decays to form an
intermediate X and then a final nert product B, 1s
considered such that

A_fo v K R (1)

Where K, is a constant rate and K, is the temperature
dependent Arrhenius rate. The species A is kept in drums
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Fig. 1. The sketch of a system of n drums in a sealed

container

I=1, 2,..., n inside a sealed shipping container as shown
inFig. 1.

The Arrhenius temperature sensitive rate for the
second reaction 1s defined as

-E

E 2
K (T)=ZT"e*T | m=0 &
Where E is the activation energy, R is the gas constant
known as Boltzmann gas constant and T is the
temperature in degree Kelvin, 7 1s the pre-exponential
factor and m 1s a reaction order.

Remarkl: The case m = 0 was considered by Trenham
and Forbes (2006).

Following (Trenham and Forbes, 2006), the governing
equations (the rate equation and conservation of energy
for drum number ‘" in a system of n drums) for the model
are given by

d[Xj]
dt

3)

=K, [A -K (THX|]

dT.
picV,—> =Qum;"Vi[X1K,, (1)) + X8, (T, - T)),

171 Jdt (4)

j=12,....n

Supplemented by the conservation of energy for the
entire container to give

n

:ZXJSJ(TJ —Tp) =4S (Ty = T,)

i=1

Ppp Vo di &)

dt

Where k;, = rate of constant step for each drum, k,(T;) =
Exothermic rate given in Eq. 3. ¢, = specific heat capacity
of the material in each drum. p; = density, m* = molecular
weight, [A;] = concentration of the pool chemical A, Q; =
exothermic heating term, 7, = Newtonian cooling
coefficient representing energy/degree/area/time, V,
volume of each drum, S, = surface area of each drum. In
the supplemented energy equation for the entire
container, other system parameters include p, = density,
¢, = specific heat capacity, V;, = volume, 3, = surface area.
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Non-dimensionalization: The above equations are non-
dimensionalized by using these suitable parameters;

o = PpCp Y, _ XSy

LBy = My =kt

fopey, Po X5 H e
RT X SE

B,=—* A= —\L 11 and n
E, V,Qm,"[A 4R

Where o, represents a volume and specific heat ratio
between the container and any of the drums, [,
represents a surface area ratio between the contamer and
the drums, L, represents a non-dimensional rate term
dependent on the
temperature 0, is a non-dimensional temperature of the
environment outside the container and A, is the heat
transfer coefficient between the drums and the container,
n is the number of drums in the container, and the
reference time

reaction, the scaled ambient

PG E,
Qm"[AJZR

s

(Trenham and Forbes, 2006). It is also noted that

T
T =—,Ta
T

>
a

_E
e
The model becomes

-1

dx o T 6
dT, 3
Lo x (0. T)"e™ + A (T, T, 7
dt
oc‘n;D =, (T, - Ty) — B, (T, - 8,) (®)
By quasi-equilibrium assumption for T,
TD - n T1 + BDea (9)
n+p, n+p,
dX = 10
d 1 :Ml_xl(eaTJmeTl (10)
t
dar = B
SreX 0, - ey (D
dt n+B,

Equilibrium analysis: For equilibrium,
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dtl :ditli %(XpTJ:XleamTl _l(m‘i‘—jeﬂ——BD ! (21)
1 'Tl n+ BD
and this leads to the equilibrium point At equilibrium, £(X,..T,)= g(X,.T,)= 0 22)
1
X ,T 6T yoe® g MO+ P) | (12)  Thenthe Bq. (16) and (17) become
( e? e) “’1( a le) 2 Ya q
D"l
-t
7L f(XI: T;) = _(ea—[‘le )m eTlE Xl - XIE eamT‘lsmi1
Ly exp( Poty J ) (23)
T T )
[eaz+ul(n+BD)eaJ g, 4 =By
BDKI BDKI ;1
(13) gX,.T)=(0,T, )" e™X, +
Stability analysis: We re-write the Eq. (10) and (11) as 1) 2 B (24)
[Xleea“‘T [m-&-T—}:T“ —D—B‘ ]Tl T
. n+py
9 £, T
(14 :
ar, In matrix form, we have
_:g(XpTi)
dt .
Where } (BaT ) ol X, eamT,Emil
F(X,T,) =1 - X 0,T " =
(X T)=m =% 1_1 (15) m+i @l
n.n Pl
g(X1=T1) X,(6,T) el 7ﬁ(Tliea) - . 1 X,
{ (%, )j (0,T )™ X.0,"T "
By Taylor’s series expansions of f{X,, T)) and g(X,, T)) 8(X,. 1) ! T, |(25)
{m+ T—JeTl
of
fX,.T)= f(Xlﬁ’T‘IE)Jr&(XIE’TlE)XIJ’_ -
! (16) Bk
of n+p
(X, TOT + .. b
a-rl 1 1 1
. [ﬂ(Xl,Tl)
g, (X..T))
8O0 T)= 805, T - B (X TN e
o 1 17 Following Derricks and Grossman (1976)
_(XIHT‘IE)T‘I +..
1 f(}jp 1)2 gl(}z(p 1) 0 (26)
The 4 partial derivatives in the expansions are R e N AT
ar -1 il 1 =
(X, T1=—{6.T = aT (18) —BBTEmeT‘E - Bmel m+— |eh
8X1( 1 1) (al) ( 1) TIE
_1 -1
o N Let A= | (6,T,) ™ XleeamTe”{m+1} el
7(X1= 1)_ XemT _1[ +jeT1 (19) le
! T By
n+p,
-1
E(XI,TI) =(6,T,)"e® (20) (27)
The characteristic equation | A-ol| = 0 mmplies that

0%,
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-1 -1
7(eaTle)f“ e’ o -X, Ba"‘Tleml{m+l}eTle
le
mm -1 1 ";71 =0
B X0, T | mt— e
(8.T,)" ™ B
o Bohy
n+p,
(28)
= o'-Tio+ D=0 (29)
(X 1 B.A
Where TJ :(eaTls)meTlE e m+— 71 — o (30)
Tle Tle H+BD
=X 1 B
D = (6T, ) e" i{nw—}r L
le T, n+Pp (31)
X, 0T [erl}
T,
The Eq. 29 gives
:>G:l(Ti T2—4D) (32)
2 ] 1 1

The stability of equilibrium point is determined by the
sign of T, when D>0 and TJ2 <4Dj;

1. Stable focus occurs for TJ <0
2. Unstable focus occurs for T, =0 (33)

3. Hopf'sbifurcation occurs for T, =0

Hopf’s bifurcation analysis: For Hopf's bifurcation, T;=0

when D>0
-1
STj= (6,1, )" e™ | e[ my 1| Pt )
rTle Tle H+BD
-1
=(6.1.)" e“{XlE[mel}_ o (35)
T. T, n+f,
w ~Bpiy
’ Bl
P, mBoh ) Bk

M Bo)+ 0Bk (y(nBy)t 8B,) 4Py
(36)
The Eq. 361s the Hopf™s bifurcation condition for the

two-variable system.
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Fig. 2: Hopt™s bifurcation curve Tj = 0 for fixed values of
A =09, Pp = 9, n = 2 and various values of
reaction order m<1

RESULTS AND DISCUSSION

By using Maple software, the numerical result for
T,=0, the Hopf’s condition (36), which is the point at
which the stability changes 1s presented as Fig. 2.

The equilibrium, stability and Hopf's bifurcation
analyses have led to the establishment of certain criteria.
The Eq. (13) shows the equilibrium point while the criteria
for stability of the equilibrium pomt have been established
i Eq. (33). A criterion for Hopt™s bifurcation has also led
to the establishment of Hopf's condition (36). The
numerical solution of the Hopf™s condition shows that the
region of instability increases as the order of reaction (m)
increases.

CONCLUSION

This result is expected not only be useful to regulate
and improve the chain reaction mechanism but will
enhance safety during manufacturing, storage and
handling of the energetic material.
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