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Abstract: Controlling the spreads of the disease 1s a primary goal of health admimstrators. In this study, we

examine a mathematical model of virus neutralizing antibody response using a stability of the model

based on Perron theorem. It is shown that the spread of the disease can be controlled if the critical

parameter p — 3B~ <1 Where 8B’ is the scale initial value of B cells and p; is the death rate of the free virus.
Ks
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INTRODUCTION % —S(DA, A, (5)

Mathematical models of wvirus neutralizing

antibody response have been examined by many dM (6)

Scientists. As a first approximation, Bocharov and

E =fAy -7 VM-uM

Romanyukhu (1994) described the numbers of antibody

forming cells required to produce the neutralizing IgG dc 2
antibody titers observed during the early phase of Fr fA; -1, VG -G @)
Vascular  Somatitis  Virus  (VSV)  neutralizing

immunoglobulin response. Since the pioneering work av

of Bell (1971) many mathematical models of B- cell EZBVBU —y,m VM -7y, VG —p,V ()

activation and antibody production have been developed

(Bruni et al, 1975, 1978, Marchuk and Petrov, 1987,

Merrill, 1987; Mohler et al., 1980; Bocharov and Where . L
Romanyukhu, 1994). Of particular interest in the study is B, - B ce.:lls specific to vascular somatitis virus.
the work of Funk ef al. (1998) and Ayodele (2003). B - Actl.vated.B cells.
B, - Proliferating B cells.
MATHEMATICAL MODEL B" - Number of VSV- specific B cells in unprimed mice.
Ay - Antibody forming cells producing [g M.
In this study, we consider the following system of As - Antlboc.ly. forming cells. producing Ig G-
equations: M - Neutrahz?ng TIg M ant.lbody.
G - Neutralizing Ig G antibody.
dB, ) . 1, - Generation rate of virus specific precursor B cells
T -, (Bn -B )— eVB, (1) from bone marrow.
g - Activated rate of vascular somatitis virus specific
to B cells.
a8, _ eVB, - qB, (2) S(t) - Rate at which IgM secreting antibody forming
dt cells switch to TgG production in the presence of
T cells help.
dB, _ B, — gB, (3) g - Expansionrate.
dt f, - Productionrate of A,
f, - Productionrate of A,
day, 4B, — 1A, —S(DA 4 v, - RateatwhichIgG molecule bind to virus.
dt P " ¥, - RateatwhichIgM molecule bind to virus.
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y,m~' - Rate at which free virus (V) is neutralized by
TgM (M) antibody.
v,g~' - Rateatwhich free virus (V) is neutralized by IgG
(3) antibody.
Mz M Mg» Mg and py are the death rate of Ay A, M, G and
V respectively (p,;>0)
d - Rate at which dV/dt depends on VB,

STABILITY OF ZERO SOLUTION

Theorem: Let R = 8B/, The zero solution is
stable 1f R<1. the
unstable.

Otherwise zero solution 1s

Theorem (Perrons): Let x = Ax+f (x.t) where A has all
eigenvalues negative real parts. Let f be real and
continuous for small |x| and =0 and f(x,t) = 0|x| as [x| >0
uniformly in t, t=0. Then the zero solution of x = Ax+Hi(x,t)
1s uniformly asymptotically stable.

Proof: We need Perrons” theorem to prove the theorem

above.
Let
x—1-Pu
e
Then the system becomes
g:7pﬁlx+s\/78\fx (9)
dt
dB . .
L= gVB —eVEx - B, (10)
dt
B, =2
St -27qB, B, av
B, A, S, (12)
dAs _ S(HIA,, — LA, (13)
dMm
— =fA, -y, VM-u,M (14)
dt
(Z_?:sze—szG—usG (13)

890

d\tf = VB - SVB'x —y,m VM - y,g"'VG — v (16)

LetZ =(x, B, By, Ay, Ao M, G, V)
Then the system (8)-(16) 1s essentially

Z'= AZ +1(Z) (17)
0,t<3.5 days
Since S (t) = %63(““),3.5 <t < 7days
180, t< 7 days
Where
-y, 0 0 0 0 €
0 —q 0 0 0 eB”
10
0 26g¢ -q 0 O 0 0 0
A= O 0 q -m, 0 0 0 0
0 0 0 0 -pn, O 0 0
0 0o 0 f 0 -u, O 0
0 0o o0 0 f 0 —pu, 0
0 0 0 0 0 0 0 8B —p,
Hence |A-TA| =0 gives
Ay = o Ay = o Ay = g A = Py A= o Ag = s Ar = s,

As = -1, +0B"

Since p=0, and g=0 then the zero solution is
uniformly asymptotically stable if -, +0B" <0i.e. R<1. So
by Perrons theorem, the zero solution is asymptotically

stable if R<1.

Remark: Tn the model of Funk ez ol (19988 = 0, p,=0,
hence the zero solution of Funk et @l (1998 )model is
unstable.
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