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Bayesian Regression Analysis Using S-PLUS and R Softwares
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Abstract: This study is devoted to the Bayesian regression analysis. Tt containg an extended version of normal

theory regression models which includes extreme-value, logistic and normal regression models as its particular

cases. Methods proposed in this study are illustrated numerically, 1.e., regression coefficient of pH on EC
(Electrical Conductivity) of soil data is analyzed numerically in S-PLUJS and R softwares.
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INTRODUCTION

Regression analysis is a statistical technique for
modeling the relationship between variables. Tn practice,
many situations involve heterogeneous population and it
is important to consider the relationship of response
variable y on concomitant variable x which 1s explicitly
recognized. One way to examine the relationship of
concomitant variable {(or regressor variable) to response
variable y 1s through a regression model m which y has a
distribution that depends upon the regressor variables.
This involves specifying a model for the distribution of y
given x where:

X = (xl,xz,...,xp)

1 xp vector of regressor variables for an individual. Let the
distribution of y given x is of the form:

f(y|x,B,G)—;f(y_XB} (1)

)

where, [ is a px1 vector of regression coefficients:

B - (Bl: Bz: e Bp)T
And:

Elylx, Bl=x

The alternative form of Eq. 1 1s:

y =x ftoz (2
Where:
, Y xB
c

has the standardized distribution with density function f
(z). The family of models for which f (z) has a standard
normal distribution 13 common in statistical literature
(Searle, 1971, Rao, 1973, Seber, 1977, Draper and
Smith, 1981, Weisberg, 1985) but models in which z has
other distribution belonging to location-scale family
(Eq. 2) are also important.

For example, extreme value regression models are
employed 1n applications ranging from accelerated life
testing (Lawless, 2003; Zelen, 1959) to the analysis of
survival data on patients suffering from chronical
diseases (Prentice, 1973; Feigl and Zelen, 1965;
Krall et al., 1975).

Furthermore, if data 1s contaminated with outliers
then normal distribution can be replaced with Student’s t
distribution (with small degree of freedom) to have a
better fit (Lange et al., 1989). Model (Eq. 2) has the ability
to accommodate linear as well as non-linear models for the
various functional forms of xP.

None of the earlier researchers discuss Bayesian
approach. Box and Tiao (1973) and Gelman ef af. (1995)
discuss this approach of regression analysis to deal with
normal linear as well as non-linear non-normal models.
Zellner (1971) deals with Bayesian inference in reference
to econometrics. It 1s mostly confined to normal linear
models only. The general frame work used for casual
inference 1s presented by Rubin (1974, 1978). Bayesian
approaches to analyzing regression residuals appear in
Zellner (1976), Chaloner and Brant (1988) and Chaloner
(1991).

Bayesian joint inference for P and o: Suppose that
associated with each individual observation is a response
y, and a regression vector:
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Table 1: A Summary of derivatives of log- likelihoods
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L - N - Nz e+ 226" —2z)+— -= . —
& it & pc ;( i i .) p s - i (ezi +1)2 &
Where, z =y-xp/o, 1=1,2,..n
X1 = (Xﬂ: X12: trer le) p (B) 0) = p (B) p (0) (4)

Thus (%, v) fori=1, 2,..., nis assumed to be a random
sample from location-scale family of models in (Eq. 1)
which can be represented as:

f (Y1 |Xi: B: 0)

Consequently, in terms of general notation:

67 =(B, o)’

A vector of length (p+1) and likelihood 15 (Table 1):

TTees 1 x.8.0)

1=1

This unplies that:

1(B,o>—log{f[f<y1 |xi,B,o)}
®)
= Elogf (z,)-nlogo
Where:
, = YimXB
' o

It may be noted that same notation z 1s being used
for standard variate both in umvariate and regression
scenario. Assuming prior independence of B and o
(Teffreys, 1961 ; Box and Tiao, 1973), researchers have:

126

As a result, joint posterior density of p and o given

data vector: yv' = (v, ¥z, ..., ¥u) 18
pBolxy) o [IFG xBop®p©) &)

Where:

X=X, X s Xn)T

1s a n»<p matrix of covariates (or regressors) corresponding
to response vector y. Now Jomt inference for p and o
can be made from posterior (Eq. 5). Posterior
mode .67 of p (P, o|x, y)serves as a point estimate of
B and o. Tts calculations requires partial derivatives of log
posterior:

1* (B, 6) = 1(B, o)tlog p (P)+log p (0) (6)

Defimng partial derivatives:

=
Ed

Iy = %, avector of (px1) partial derivatives

I’ = ai a scalar

G’

Lo
2 9Rdc

, a(px1) vector
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17, = ﬂ a (1xp) vector
* 7 d0ap’
I, = ﬂ a (pxp) matrix
BR aBaBT 2
And:
r oo 2’1
“ doag’

These derivatives can be defined more explicitly as:

oL PB
P P
=1+ o)
plo)
lgc = Bo
Iy =1
et 28]

And:

’

Ir =1 +_@}
| p(o]

Consequently, score vector U (P, o) and Hessian
matrix H (B, o) are:

I
U(B,c)= LE }, a (ptl) vector

And:
e L

10[3 fore]

H(B,G)—{ }, a (p+1)<(p+1) matrix

Therefore, making use of Newton-Raphson iteration
scheme there can obtain posterior mode vector .6)" as:

SRS H G
G, 1

The asymptotic posterior covariance matrix of
(Eq. 5) can be obtained as:

Q> o

I (Bo) = -1 (B.0)
-Y 3o

More clearly, posterior density:

p@chtNM@ﬁ&iﬁéﬁﬂ

[1+ O(n_;)]

where, N. (a, b) is the r-variate normal distribution
with mean vector a and a covariance matrix b.

(8)

This 15 a first order approximation of the
posterior density (Berger, 1985). An equivalent
version of tlis approximation 1s the Chi-square

approximation, 1.e.:

W(B.0)=2[I' (B.0) I (B.o=x,

A more accurate approximation, Laplace’s
approximation ( Tierney and Kadane, 1986; Reid, 1988) can

be also used, 1.e.:

_ptl
2

p(B.o|xy)=m) 7 [1B.0)[

o ©
exp{EW(B,G)}(l + O(n_l))

Any of the approximations can be used both
for hypothesis testing and construction of credible
regions.

The marginal linference for p and 0: In regression
analysis there are often interested with the regression
coefficient vector B (Weisberg, 1985, Zellner, 1971)
and 0 1s treated as nuisance parameter (Box and Tiao,
1973; Gianola and Fernando, 1986; Gelman et al., 1995)
(Table 2).

Therefore, nuisance parameter must be integrated
out from the joint posterior density (Eq. 5) to
obtain marginal posterior density of P, denoted by
p (Blx. y).

However, if the interest is concerned with the
scale parameter 0, its posterior p (0|x, v) can also be
obtained after integrating out the joint posterior with
respect to B. To be precise, marginal densities for § and o
are:
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Table 2: A Summary of prior densities for location parameter 3

Table 3: Regression coetficient of pH on E. C for various models

P () [P'(M) } p (Intercept) Posterior Std.
Name of density ~ p() P P ) o B, Bo B,
Non-informative  Constant Zero Zero Regression model
Normal 1 D 1 Extreme-value 6.71 232 0.0447 0.2881
c eXP(f—DTDJ - -1 Logistic 6.29 2.41 0.0365 0.2332
z S S Normal 6.33 2.00 0.0335 0.1890
PBIxy)= J‘p(B:G‘ x,y)do (10) Laplace’s approximation: Laplace’s approximation can

Similarly, marginal posterior of o can be obtained, i.e:
p(olxy)=[p(B.olxy)dB an

Bayesian analysis is to be based on these two
posteriors. For normal model, p (B|x, y) and p (0|x, y) can
be obtained in closed form (Zellner, 1971). However, for
non-normal members of location-scale family these
marginals can be obtained through numerical integration
only (Naylor and Smith, 1982). Altemative approach is to
deal with asymptotic theory approach (Tierney et al.,
1989, Leonard et af, 1989). Normal and Laplace’s
approximations can be written directly for posterior
densities p (P|x, y) and p (0]x, y) as under.

Normal approximation: Marginal posterior density of
can be approximated by normal distribution as (Table 3):

pBxy) =N, B.I) (12)
Where:

B = The posterior mode
I} = A pxpmatrix

Defined as:
. n o
-1 i 12
I (B)G){Il }

21 I;é
where, suffixes 1 and 2 to I stand for p and &,

respectively. This approximation is equivalent to the
Chi square approximation defined as:

B BTL BB~

Corresponding approximations for p (0x, y) can be
written as:

A 13
p(@|x.y)=N, (617 13

This is equivalent to the Chi square approximation, i.e:

(6-6) 1,(c-6&)=x

also be used to approximate marginal density of B, i.e:

1B
2m | 1(R.0)|
expll'(B.6(B) - 1" (B.0]

pBlxy)= (14)

where, 6B) is the posterior mode of o for a fixed p.
Corresponding approximation for p (0|x, v) can also be
written as:

p(o|x.y)=(2m) ? M
|1(B(c).0)|

exp[l*(Bie),0) 1" (R.0)]

(15)

BAYESIAN REGRESSION ANALYSIS
OF LOGISTIC MODEL

Let v be the response vector and x, be the vector for
the ith observation. Assume that:

, _YXB . (16)

For some f (logistic distribution). Consequently, in
terms of general notation:

0=, 0)

A vector of length (p+1) and likelihood 1s given by:

[Tty | %.6.0)

1=1

This unplies that:

1(B.0)=log [ J£ (3, | x,.B.0)
= a7

= Elogf(zl) -nlogo

1=1
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where, z is defined in (Eq. 16). Researchers take partial The log-posterior is given by:
derivatives with respect to p and o:

logp(B.o|x,y)=log [ [p(y |x,.B00+
i=1

L
" oop logp(P) + logp(6)
1&fe—1] ¢ Or
- 2 X'1
SEICAE I"(B.0)=1(B,0) +logp(P) +logp () (20
- al For a prior:
° 9o pB.oy=pPBiplo=1
1 ei-1) n
= Elex 11 o Researchers have:
) =1
a’l 1*,=1,
lg, =
dfac
__Li e +2z¢" -1 - %5, = lg,
02 i=1 (ez‘ + 1)2 '
1 off = 1{,[3
2
o= 71 155 = L
dGdp And:
- 7L o ezz‘ + 22161‘ -1 X_T l*aa - I{m
o' & {e" +1) '
The posterior mode 18 obtained by maximizing (Eq. 20)
) with respect to P and a. The score vector of log posterior
L. = 1 is given by:
BB aBaBT
2 & ehxx, U, oy=(1*,, 1%,
= 7_22 P

6> S (e® +1)
And Hessian matrix of log posterior is:

9l
Ly = LA 4
do do HBo= ©
25 ¢%+ze"-1) 1 b ag
P I Er e el
ol {e" +1) c
Posterior mode (§,5) can be obtamed from iteration
Researchers follow the standard approach of Box and scheme:
Tiao (1973) and Gelman ef al. (1995) assuming the prior: A 17
o3 0599 s el o
o " o
p(p.o)=p(Bip(o) (18)
where, p (B) and p (@) are priors for p and o. By using Consequently, modal variance % can be obtained as:
Bayes theorem there obtain the posterior density p
(B, ofy) as: (g.o)=-H"(B,0)
p(R.G|xy) o ﬁf(}’ |%,.B.0p(R.0) (19 Using normal approximation there can write directly
1=1

a bivariate normal approximation of p (B, 0|x, v) as:

129
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p(Bo| y):NpH[(é,éﬂl‘ (é,énj

|

Similarly there can write Bayesian analog of likelthood
ratio criterion as:

1 (22)
[1+ Ofn )

WBo)=— 20 o) - (o=, )

Using Laplace’s approximation p (B, 0|x, v) can write as:

p(B.olx Y= ¢ (IO
expll"(,0) - 1' (L 0))(1+ O(n ™))

(24)

The marginal Bayesian inference about P and o is to
be based on marginal posterior densities of these
parameters. Marginal posterior for B can be obtained after
integrating out p (B, o|x, ¥) with respect to 0, i.e:

pB|x.y) = [pB.o|xy)do (25)

Similarly, marginal posterior of o can be obtained, i.e:

P(e|x%y)=[p(B.c|x,y)dB (26)

The Normal and Laplace’s approximation’s of
p (Blx, y) and p (0|x, y) are given as. There can write
normal approximation of marginal posterior p (B|x, y) as:

(27)

-1
11

(B y)=N, (f.I

where, B is the posterior mode and 1} is a (p*p) matrix

defined as:

-1
1

I
I—l

22

1.6 {

-1
IZI

Bayesian analog of likelihood ratio criterion can also
be defined as a test criterion as:

BB, BB =1 (28)

Laplace’s approximation of marginal posterior density
p (B]x, v) can be given by:

130

Table 4: Approximate Normal posterior quantiles for regression coefficient
of various models

Posterior quantile

Models Posterior  0.025  0.25  0.50 075 095 0975
Extreme-value Normal 6.63 6.68 6.72 675 679 6.80
Logistic Normal 616 6.20 6.23 625 629 6.30
Normal Normal .26 6.31  6.33 635 639 640
Boy |
|1(B.o)]
pBIxy)= (29)

2r| 1B, o)) |
exp[l” (B,0(B) -1"(B,0)]
Similarly, p (0|x, y) can be approximated and results

corresponding to normal and Laplace’s approximation can
be written as:

POy} =N, (©.1;) G0
Or equivalently:
(6-0)"1,,(0-5) =¥’ (31)
3 I AN 7
p(olxy)=am) o[ TEDL o2
|1(B(c),0)|

exp[l"(B(c).0) 1" (B,0)]
Numerical illustrations: Numerical illustrations are
implemented in S-PLUS software for Bayesian regression
analysis. These illustrations are meant for the purpose of
showing strength of Bayesian methods in practical
situations. There have used survReg and censorReg
functions for Bayesian analysis of various regression
models with non-informative prior. S-PLUS has a function
censorReg for regression analysis. This has a very
substantial overlap with survReg but is more general in
that 1t allows truncation as well as censoring
(Venables and Ripley, 2002) (Table 4). The usage of
survReg and censorReg are given below:

swvReg (formula, data, dist)
censorReg (formula, data, dist)

Where:

formula = A formula expression as for other regression
models

data = Optional data frame in which to mterpret the
variable occurring in the formula

dist = Assumed distribution for y variable
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D"'=(D,.D,, .., D, a(px1) vector:

D- — 81 _Bm

1 GDI
fori=1, 2, ..., p; I stands for identity (pxp) matrix and ¢ 1s
the normalizing constant.
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