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ABSTRACT

The aim of this study is to study the asymptotic behavior of the
Arithmetic Reduction of Intensity (ARI) and Arithmetic Reduction of Age
(ARA) models as two imperfect maintenance models. These models have
been proposed by Doyen and Gaudoin, the failure process is simply
Non Homogeneous Poisson Process (NHPP). The maintenance effect is
characterized by the change induced on the failure intensity before and
after failure during degradation period. To simplify study, the asymptotic
properties of failure process are derived. Then, the asymptotic normality
of several maintenance efficiency estimators can be proved in the case
where the failure process without maintenance is known. Practically, the
coverage rate of the asymptotic confidence intervals issued from those
estimators is studied.
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INTRODUCTION

Throughout their operational life, the industrial
systems are subjected to actions of preventive and
corrective maintenance. The essential assumptions
on maintenance efficiency are known as minimal
maintenance and perfect maintenance. Further
realistic ideas of maintenance are somewhat
intermediary between these two extremes. Various
models have already been proposed for imperfect
maintenance effects, for example™. Single a minority
imperfect maintenance models have been statistically
studied, particularly regarding the estimation of
maintenance efficiency. For virtual age models, some
empirical studies on maximum likelihood estimators
have been published?. The entire of these
articlesare based on simulation results. Recent articles
Pefia et al.”! and Doyen™ deal with simulation and
theoretical statistical results in a general class of
repair models that include the Kijima®™ models and the
Brown-Proschan model as the work of Makram et al..
But in these articles, authors consider multiple
independent and identical systems over a finite time
interval.

Thus, the system behavior without maintenanceis
known and the failure intensity is then supposed to be
as a function of the single efficiency parameter. For
this fact, we try to proceed in the same way as Doyen,
by introducing in the first place the properties of
maximum likelihood estimator and in the second place
by interesting in exposing an explicit estimator. Several
works was carried out on the parametric statistical
inference in imperfect repair models. We refer for
example to the Shin et al.”’ study in which authors
developed a preventive maintenance policy, as the
work for Sheu et al.!”’. For the case of the Arithmetic
Reduction of Intensity (ARI) and the Arithmetic
Reduction of Age (ARA) models models, we evoke the
Doyen and Gaudoin® and Doyen™ works. The
numerical results for our study were at the estimate
base by the maximization likelihood method and its
properties.

The study is organized as follows: Section 2
discusses the properties of the failure process. Section
3 analyses the failure intensity first order asymptotic
extension. Section 4 derives the cumulative failure
intensity second order asymptotic extension. Section
5 introduces the maintenance efficiency estimation. A
simulation phase is done in section 6. Finally, section 7
gives conclusions.

Properties of the failure process: The basic outline of
the ARI model is to ensure that the maintenance
effect shoulders on the failure intensity itself. The
fundamental idea is at the origin of the Chan and
Shaw™ work, for whom the maintenance effect is to
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Fig. 1: Failure intensity for the model

reduce the failure intensity with quantity proportional
to its value right before maintenance. This model is
characterized by the following failure intensity:

A=A —p S (=Y MTy ) (1)

=0

Doyen and Gaudoin extended the of Chan-Shaw
model. The construction principle of their model
appeared in two stages. The first stage is to formulate
a model similar to that of Chan-Shaw, for which the
maintenance effect is to not reduce the failure
intensity but its increase since last maintenance. In a
second stage, authors have defines the ARI models
with memory m (ARI_) using intensity written in the
following way:

min (m-1, A'~1)

A=rMO-p 20 T-pPMT ) (2)

Under these conditions, the model defined by the
intensity (1) can thus be called ARl model with infinite
memory (ARI ). Figure 1 represents the generally
appearance of the failure intensity of the ARI_, model.
The first fine line represents the initial intensity and
the second, the minimal degradation intensity, A, (t).
This function is defined as maximum lower limit for
the failure intensity. For the ARI, model, minimal
degradation intensity is:

20, (0 =(1-p)" M) (3)

Practically, that wants to say that the examined
system is degraded faster than a system whose failure
intensity is A, (t) and slower that a system whose
failure intensity is the initial intensity A(t). Near the
ARI_, models, the failure intensity is vertically parallel
to the initial intensity, as the arrows indicate it on
Fig. 1. The maintenance efficiency is allotted by the
estimatedvalue of the parameter p, called
improvement factor.
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Fig. 2: Failure intensity for the model

The principle of the ARA models is considered in
the manner that the maintenance causes to renovate
the system. This is with the intuition that its failure
intensity at the instant t is equal to the initial intensity
at one instant considered as the virtual age of the
system, in perception where we consider that the real
age of the system put under operation at instant O is t.
The failure intensity of the ARA model is defined by:

min(m-1,A') )
A, _x[tp N lp)JT,\;J] (4)

=0

Figure 2 represents the failure intensity behavior
of the model ARA . We see that at any instant, the
intensity is parallel to the initial intensity.
Nevertheless, this time the correspondence is
horizontal (direction of the arrows). The minimal
degradation intensity for the ARA,, model is:

V20,2, () =A((1-p)"t) (5)

The failure intensity, as well for the ARA,, models
that for the ARl models, expressed using the m last
failureinstants. Thus, the memory imitate a Markovian
property, remaining the maximum number of the
failures which can influence the failure intensity.

Failure intensity first order asymptotic extension: In
this section, the idea is to show that the failure
intensity and the asymptoticintensity have anidentical
behavior. Thus, we recall the property presented in,
that if exists a function A, not decreasing and verifies
for our model Vt>y,: A,;.(t) hence for all:

min(

k>0:t-T,_, =o(t)

We develop the asymptotic intensity with the
same principle which followed by Doyen!, like the
minimal degradation intensity for the effective
maintenance and the maximal degradation intensity

for the harmful maintenance.
admit for our generalization of the ARA,
model, like asymptotic failure intensity, the
function: A_=A((1-p)" (t)) And the function defined by
A. = (1-p)m A(t) is considered as an asymptotic failure
intensity of the ARI_, generalized model.

In continuation, the initial intensity, A(t), is
supposed to be as a deterministic function, which is
not identically null and which is increasing during
the period of the system degradation (defined in
Makram et al.”® without maintenance process). These
conditions necessarily imply:

Consequently, we

A=

The function A is the cumulative failure intensity.
If moreover A is a regular variation function, then for
t>y,: Mt)-Mt+0(1)) = o(A(t)).

Thereafter, the whole of asymptotic results of this
study are rested on a rewriting of the failure intensity,
considered exclusively by finished memory models. By
means of:

P A—p) == (- p)

This new form of failure intensity is defined, for
the ARI, generalized model, Vt>T, >Ty, as:

=h ()

E:i;(l—pf[kwﬁ)—}%(t+(t—7}%k»}
(6)

By means of the foregoing property, this formula
is written as follows:

b= b () m Z ) [ () -hu (o)

=A, (t)+o(h, (1)

In same way, for the ARA,, generalized models:

A =\, (t) - |:?»oc (t) -\, [t + a _pp)m ka: 1-p) (t - I\";k ) H
(7)

And that:
o=, (1) =2, () =&, (t+0) ] =L, (t) + o, (1)

Consequently, for our generalizations of the
ARI_,and ARA, models, the failure intensity, for all t>y,,
verify: At = Aeo(t)+o(A=(t)). Under the same
conditions, the cumulative failure intensity proves: A,
A_(t)+o(A,)(t). This first order of asymptotic expansion
of the failure intensity, make possible to verifies that
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the increasing phase of the failure intensity and the
asymptotic intensity of the ARl and ARA_, generalized
models of finished memory have a same asymptotic
behavior.

Cumulative failure intensity second order asymptotic
extension: Using the second order of asymptotic
expansion of the cumulative failure intensity,
Shin et al."”’ goes more and expresses the difference
between failure and asymptoticintensities. The author
proved that the cumulative failure intensity for the
and models with the power failure intensity. In
consequence, for our generalization with bath-tub
failure intensity, the cumulative failure intensity of the
model can be written, for all as:

t
A=A, (1)+ i fp)m S a=p) () =1, (T, )ds(8)
N

Thereafter, let's suppose that through the
asymptotic intensity, or in an equivalent way, during
the degradation phase of the system that the initial
intensity is divergent. That’s to say then the proposal
that the cumulative failure intensity of the ARI,
generalized models ensures:

1-(1+mp)(1-p)"

A =A_(t
S

InA(t) +o(lni(t)) (9)

By analogy with the ARI generalized models is
defined by:

Bo-1
n 0=t E[tij
n() T]Z nZ

Then the cumulative failure intensity of the ARA |
generalized models verify:

- 1)%111(0 +o(In(t))

(10)

The tworelations 9 and 10 indicate the asymptotic
behavior of the failure process of the ARl and ARA,
models. In fact, this behavior with finished memory is
overall the same one as that NHPP with intensity A._.
Obviously, for the models with finished memory, if
AMt) is concave (respectively convex), for the same
parameter p such as O<p<1l, the asymptotic
degradation speed of the ARA, model is larger
(respectively smaller) than that of the model.
Consequently, ARI_, ARA  and models with asymptotic
intensities having different asymptotic behaviors are
similar to NHPP with different failure intensities. This
way, ARl and ARA  models with same parametersare

not comparable because they have very different
degradation speeds. Nevertheless, it can happenthere
that if the initial intensity is a function power, the
values of the maintenance efficiency parameters such
as the models are comparable. And each of the two
models has its own maintenance efficiency.

Maintenance efficiency estimation: The object now is
to study some estimators of maintenance efficiency
since initial intensity is known. In that case the
failure intensity is supposed to depend on a simple
parameter p. The true value of this parameter will be
noted p,. The maximum likelihood estimators MLE of
maintenance efficiency, denoted pL For the ARI,
generalized model the MLE of maintenance efficiency
parameter checks:

A

(1-p)" (- SNOD (1)
- py)

The MLE of maintenance efficiency parameter of
the ARA,, generalized model, for only one observation
of the failure process proves:

Bz
t—'Y m(p,— A m(f, - £
)T ((1 5 ‘)lwz,,) (1=py)™ " = (=)™ S N (0D
2T Po

(12)

As it was seen according to preceding
assumptions, we do not know how to prove that the
MLE is convergent when the maximization of likelihood
is made on ]-, 1]. So the MLE must be required in
compact of ]-«, 1] containing the true value p, of
maintenance efficiency. The explicit estimators (EE),
which are not present in this problem type, can exist.
These EE verify the same asymptotic properties as the
MLE. For the ARI,, generalized model for only one
observation of the failure process over ]y, t], the EE of
maintenance efficiency parameter is given by:

ale—[ N, } (13)

Similarly with the ARI  generalized model, an EE
can be defined for the ARA , generalized model using
the initial intensity in bath-tub form. Thus, we define
near last generalization, for only one observation of
the failure process the EE of maintenance efficiency
parameter. This estimator is expressed by:

[m(p,-1)]
b :1—[”3{}/‘} (14)
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Fig. 3: CR(p); B, =0.75,B,=3,n =60

In consideration to asymptotic normality of the
estimators introduced in front, we maintain to define
the Asymptotic Confidence Intervals (ACI). It is clear
that for a same model, MLE and EE verify the same
properties, then they describe the identical ACI. Thus,
we can assimilate to the model ARl generalized
model with finished memory, simultaneously for two
estimators the ACI for (1-p,)™ at level §, given by:

ugiJuq4Aax1—@m+u{

ACI(p)=(1-p)" + A

(15)

L . 5 .
where, u, indicate it 1-— quantile of the reduced-
centered normal law, pindicate the MLE or EE and:

1 t—y B
N
Mo M.

In a similar way, we can define an ACl for the ARA
generalized model. The ACI for (1-p,)" of level & is
defined as follows:

P 4 X " (-
nz{u; rJu;[n—(t—xl P -py H

2(t-,)"

ACI(p)=(1-p)"" " +

(16)

Simulation phase: Using simulations groping of the
ARl and ARA, models one next to one and for a given
ACI, we estimate the coverage Rate (CR). This rate is
expressed as the simulations proportion for which the

true value of the parameter is in the confidence
interval. Obviously, the CR converges to 1-6 when the
number of observed failures n increases, where, &
represents the ACI threshold. Practically, the CR is a
function only of the estimator quality used to build the
ACI. Thus, we have estimated over 10000 simulations,
the CR of the ACl at level 95 form =1, 2 or 3, B, =0.75,
B,=3,p=-1,-0.7,-0.5,-0.2,0,0.2,05,0.7 or 0.9 and
n = 60. The following notations are used in the Fig. 1:

Figure 3 represents the CR evolution according to
the value of maintenance efficiency parameter p. So
the CR of EE depends closely of the p value. The EE
provides the most correct ACI for maintenance
efficiency close to the minimal case (p near to ), even
for alow values of the number of observed failures. On
the other hand when maintenance efficiency is too
different to the minimal assumption, the converges
less quickly especially in the EE case. This result is a
consequence due to the EE, which is founded on an
equivalence property between cumulative failure and
asymptotic intensities. This equivalence relation is
made with a near remainder which is asymptotically
equal to:

(ﬁz—nl—(y+mpx1—pwl
(1-p)" P

r(t)= n(t-v,) (17)

At a certain instant t>y, and for p = 0, this quantity
is null by hypothesis. In fact in this case A, = A_(t).
Whereas, when p tends to 1 by lower values, the above
difference diverges. finally, since the maintenance
efficiency is degraded and becomes more and more
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harmful, the cumulative asymptotic intensity increase
and the difference r(t) tends to a constant limit equal
to m(B,-1).

The MLE are characterized by CR, which are less
sensitive to the value of p, but it is always under the
assumption of minimal maintenance efficiency that the
estimators are most correct. This CR behavior whether
through of the MLE or EE, can be owed to the
operation of the system in the improvement and
service life periods and is maintained by minimal
maintenance actions. It appears clearly, on the one
hand for low numbers of failures ACl and on the other
hand for the models with high enough memories.
Thus, for a great number of failures the are the good
approximations for the practical value of maintenance
efficiency.

CONCLUSION

In this study we generalized two classes of
imperfect maintenance models using failure intensity
in bath-tub shape. We gave new results on our
generalizations of arithmetic reduction of age or
intensity with memory m. We have shown that ARIm
and ARAm models with finite memories are adapted to
reparable systems. In fact, they are asymptotically
equivalent to a non homogeneous Poisson process
with no decreasing failure intensity. Their failures
process is characterized by equivalence between
cumulative failure intensity and cumulative asymptotic
intensity. In the application, it is proposed that if the
initial intensity is unidentified, then an estimate could
be used. Except, this also guides to a different property
of the estimator of maintenance efficiency. Further
study can be to extend the statistical properties to
this case. For the ARI and ARA generalized
models with finished memory, we proposed the
explicit estimators of maintenance efficiency
parameter. Then, we presented theoretical statistical
results for the estimate of maintenance efficiency. The
convergence properties relative to maximum likelihood
and explicit estimators were derived. Thus, we could
assume that the asymptotic confidence intervals are
issued from those estimators.
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