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Abstract: Over the last few decades, mixture distributions
are used in creating population from two or more
distributions. Mixture distributions are a good application
in the applications of Medical Science, Biology,
Engineering, Finance and Economics. Gaussian mixture
models have broad utility including their usage for
model-based clustering framework. Recently, there are
indications to use of non-Gaussian mixture distributions
to skewed and asymmetric data. We propose a mixture
model of Inverse Power Gamma Shape distributions
(IPGSM) to analyze positive data. Basic structural
properties such raw and central moments, hazard rate
function and order statistics are obtained. Different
estimation methods are studied to estimate the proposed
model parameters. Simulation studies is done to present
the performance and behavior of the different estimates of
the proposed model parameters. Two real data sets are
provided to compare the reliability of the new model with
other models.

INTRODUCTION

If we have positive data, right-skewed and assumed
to come from a mixture distribution, then the use of a
Gamma density is a logical choice. There are many papers
discussed finite mixtures of Gamma. John[1] discussed nite
mixtures of Gamma of a two-component model with both
the method of moments and maximum likelihood.
Gharib[2] studied two characterizations for a mixture of
two Gamma distributions. Huang and Chang[3] showed
that the Lukacstype characterization for the sum of
independent Gamma random variables can be represented
as a particular mixture of Gamma. Mixtures of Gamma
have also been presented as applied models for various
applications for example, characterizing rates across sites
of molecular sequence evolution Mayrose et al.[4],
modeling internet traffic Almhana et al.[5] and modeling

extremes in various hydrological phenomena Evin et al.[6].
The objective of this paper is to consider seven different
estimators for the parameters of our proposed distribution
and evaluates their performance in simulation and
applications studies. Many authors have compared several
classical  estimation  methods  for  estimating  the
parameters of well-known distributions. For example,
Rodrigues et al.[7] for Poisson-exponential distribution,
Karamikabir et al.[8] for a new extended generalized
Gompertz distribution, Dey et al.[9] for exponentiated
Chen distribution and Sharma et al.[10] for the generalized
inverse Lindley distribution.

In this study, we are motivated to introduce the
IPGSM model because it contains a mixture of another
lifetime sub model; this model reveals upside down
bathtub-shaped hazard rate which occurs in most real life
systems and very useful in survival analysis; the proposed
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model can be considered as a suitable model for fitting the
positive data with a longer right tail which can be used in
various fields such as survival analysis and biomedical
studies and the IPGSM model outperforms most
well-known lifetime models with respect to two real data
sets.

For our paper, let X is continuous random variable
follow the Gamma distribution with parameters λ  and  θ,
then the probability density function (pdf) is given by:

(1)1 yf (y; , ) = y e ; y 0, , 0
( )


 

     
 

where, is (complete) Gamma function.a 1 y

0
(a) y e dy

    
Here, λ is a shape parameter and θ is a an inverse scale
parameter called a rate parameter for the gamma density.
We denote this distribution by G(λ, θ) and the cumulative
distribution function (cdf) can be written as:

(2)   , y
F y; ,

( )

  
  

 

where,  is the lower incomplete gamma
x

a 1 y

0
(a, x) y e dy   

function. Let Y be a random variable having pdf (1), then
the random variable X = Y-1/α = is said to follow an
Inverse Power Gamma (IPG) distribution, shown as X -
IPG (α, λ, θ) with pdf and corresponding cdf defined,
respectively by:
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where,  is the upper incomplete gammaa 1 y

x
(a, x) y e dy

    
function. It can be noticed that the inverse Gamma (IG)
distribution is a special case of IPG when α = 1.

Suppose a mixture distribution consisting of k
components (i = 1, 2, ...., k) and the distribution of the ith
individual component follows an IPG distribution. The
generated mixture distribution represents the Inverse
Power Gamma Shape Mixture (IPGSM) distribution with
pdf and cdf defined, respectively by:

(5)
k

i i
i 1

f (y; , , ) f (x; , )

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(6)
k
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where fi (x; α, θ) = f (x; α, i, θ) and Fi (x; i, α, θ) denote
respectively, the pdf and cdf of an inverse power Gamma 

IPG (α, i, θ) random variable. Let k is known and fixed,
whereas π = (π1, ..., πk) is a vector of mixture weights
(proportions) that satisfy the conditions:

C 0<πi<1 œi = 1, 2, ..., k

C
k

ii 1
1


 

The aim of this study is to define and study a new
finite mixture distribution called the Inverse Power
Gamma Shape Mixture (IPGSM) distribution with its
mathematical properties. These include the reliability
measurers such as survival, reverse survival and hazard
rate function. The moments and moment generating
function are provided. Maximum likelihood estimation of
the model parameters and confidence interval are derived.
Application of the model to a real data set is finally
presented and compared to the fit attained by some other
well-known distributions.

The IPGSM distribution and statistical properties:
Equation 5 and 6 can simply be rewritten using next
theorem.

Theorem 1: Let X be a random variable that follows the
IPGSM distribution, then the pdf and cdf can be written,
respectively as:

(7)
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From the definition of the upper incomplete gamma
function, we have:
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so, we have:
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From Eq. 9 and 10, we have:

(11)
k i

i

(k) e
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where,  πi  is  restricted  to  be  positive  and  sum  to 
unity (πi i>0 and Gk

i = 1 πi = 1). The cumulative distribution
function (cdf) of the IPGSM distribution is given by:
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letting y = (1+z-α)θ and after simplification the expression,
we get the following:
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Behavior of the density function: The behaviors of the
density  function  of  the  IPGSM  distribution  at  x  =  0
and x = 4, respectively are given by:
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Theorem 2: The probability density function of the
MIPGSD model is unimodal shaped in x.

Proof: The first derivative of f(x)is given by:

(x)
f '(x) f (x)

g(x)


 

where:

2 1(x) ax bx +c, g(x) = (+x )x     

with:

a 1 , b 1 (k ) , c         

It is clear that ψ(x) is a unimodal quadratic function
and that the mode of f(x) implies ψ(x) = 0. Let D = (b2-
4ac) be the discriminant of ψ(x), the second derivative of
f(x) given by:

1
f "(x) [(g '(x) (x))f '(x) '(x)f (x)]

g(x)
   

where,  g’(x)  =  (1+α  +(1+2α)  xα  and   ψ’  (x)  = 
2aαx2α-1+bαxα-1. Clearly, D>0 and ψ(x) has maximum
value at the point x0 where:

1

0

b+ D
x
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 
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 

since,  has a global 0 0 0f "(x ) D/g(x ) f (x ) 0, f (x)  

maximum at x0, hence, the mode of f(x) is given by:

1

2

0

1 (k ) + (1+(k ) ) +4 (1+ )
x

2(1+ )

          
 
  

In Fig. 1, we plot the behavior of pdf for the IPGSM
distribution for some values of θ, α.

Behavior of the hazard rate function: The hazard rate
function (hf) of the proposed model is obtained as:
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Fig. 1: Plots of the probability density function of the MIPGSD model for different parameter values

(12)
k k 1

(1 x )
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h(x) e
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
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where, x>0 and α, θ>0. Figure 2 shows the hf plots of the
MIPGSD model for different values of the parameters and 
Fig. 2 reveals that the hf of proposed model is upside
down bathtub shaped.

Moments and related measures: Let X be a random
variable that follows the MIPGSD model with pdf as in
Eq. 11, then the rth raw moment (about the origin) is
given by:

(13)
r

k+ i
k

r
i 1
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The mean of the MIPGSD model is given by:

r
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The nth central moments of the proposed model are given
by:

(14)

n
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j
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The variance, coefficient of skewness, kurtosis and
variation measures can be obtained from the expressions:

2
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3 4
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2 2

, and CV 100
  

     
  

upon substituting for the central moments in Eq. 14. Raw
moment of the MIPGSD model will exist only when i>r/α.
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Fig. 2: Plots of the hazard function of the MIPGSD model for different parameter values

Therefore, the evaluation of inverse moments may be of
interest. The rth raw inverse moment (about the origin) is
given by:

(15)
1

r
k i

k
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(k)e i +r
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The harmonic mean of the proposed distribution is
obtained by:

(16)
1

k i
k

i 1

(k)e i +1
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From the empirical relation among mean, median and
mode, the median (M)of the proposed distribution can be
written as:

(17)0

1 2
M x +

3 3
 

Table 1 shows some important measures of the IPGM
distribution at different parameter combination and it is
observed that the shape of the proposed distribution is
right skewed for values of k, α and θ.

Order statistics: Let X(1), X(2), ..., X(n) are the n ordered
random sample drawn from pdf (7). Then, the density of
the rth order statistic follows from Arnold et al.[11] with
the pdf of X(r) is given:
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Hence, using (Eq. 7, 8), the pdf and the cdf of rth order
statistics are, respectively, given by:
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Table 1: Values of some important measures of the MIPGSD model
Moments μ σ2 β1 β2 x0 M CV H
k (α = 6, θ = 4)
2 1.3748 0.1162 8.1008 25.1965 1.1870 1.3122 24.7971 0.7609
4 1.2685 0.0906 9.0295 27.4190 1.1010 1.2127 23.7307 0.8211
6 1.1538 0.0606 11.0618 32.8759 1.0225 1.1100 21.3309 0.8954
8 1.0476 0.0327 14.1981 43.8147 0.9608 1.0187 17.2496 0.9754
10 0.9662 0.0148 14.6772 55.0649 0.9143 0.9489 12.6023 1.0479
k = 4, θ = 2
6 1.0501 0.0479 11.1658 33.6334 0.9370 1.0124 20.8408 0.9825
8 1.0338 0.0236 7.0516 19.3308 0.9546 1.0074 14.8540 0.9843
10 1.0253 0.0141 5.5140 14.9817 0.9646 1.0050 11.5615 0.9862
12 1.0202 0.0093 4.7200 12.9152 0.9710 1.0038 9.4705 0.9878
14 1.0168 0.0067 4.2376 11.7156 0.9755 1.0030 8.0227 0.9891
k = 2, α = 6
1 1.0347 0.0578 9.2082 28.1615 0.9058 0.9917 23.2315 1.0050
2 1.1966 0.0846 8.4914 26.1580 1.0365 1.1432 24.3055 0.8724
3 1.2991 0.1025 8.2261 25.4955 1.1225 1.2402 24.6464 0.8047
4 1.3748 0.1162 8.1008 25.1965 1.1870 1.3122 24.7971 0.7609
5 1.4351 0.1274 8.0318 25.0363 1.2388 1.3697 24.8768 0.7291

(19)
j k

n n r
k

r:n
j 0 k 0

n n j (k, (1 x ) )
F (x) ( 1)

j k (k, )



 

      
          
 

Estimation and inference of the parameters: The main
aim of this section is to study different estimation methods
of the unknown parameters of the MIPGSD model.

Maximum likelihood method: The most widely method
used for parameter estimation is maximum likelihood
method. Let x1, x2, ..., xn be a random sample from the
MIPGSD model with pdf (Eq. 11). The log-likelihood
function is given by:

 
n n n

i i i
i 1 i 1 i 1

L n +n ln( )+kn ln( )-n ln (k, )-(1+ )

x +(k-1) ln(1 x ) ln x 

  

       

    

The maximum likelihood estimators (MLEs) of α, θ
denoted by MLE and can be obtained by solving theMLE



following system of non-linear equations:

n n

i i i
i 1 i 1

n
i i

i 1 i

k 1 n

i
i 1

L n
ln(x ) x ln(x )+(k 1)

x ln(x )
0

1 x

L kn n e
n x 0

(k, )



 






 





     

 




 
     

   

 





We used non-linear maximization techniques to get
the solution of the MLE's of the parameters. For interval
estimation of the parameter vector Θ= (α, θ)T, we derive
Fisher information matrix for constructing 100 (1-ψ)%
asymptotic confidence interval for the parameters using
large sample theory. The Fisher information matrix can be
obtained by using log-likelihood function as:

2 2

2

2 2

2

L L

I( , ) E
L L

  
      
  
 
  



where:

 
2 n

i i2 2
i 1

2 2 2n
i i i i

2
i 1 i i

2 2k 2 2 k 2

2 2

2 2 n

i i
i 1

L n
(ln(x )) x + k 1

x (ln(x )) x (ln(x ))

1+x (1+x )

L kn e (k 1) e
n

(k, ) (k, )

L L
x ln(x )





  

 


    






    

 

 
 

 
    

          
 

  
 







The diagonal elements of the inverse of the Fisher

information matrix provide asymptotic variance 1I ,  


of α and θ, respectively. The corresponding asymptotic
100 (1-ψ )% confidence interval of θ and α are given by:

1 1
2 2

Z Var( ), Z Var( ) 
 

   
  

respectively.

Least squares and weighted least squares methods:
The least squares (LSE) and the weighted least squares
(WLSE) methods are used to find the minimum distance
between theoretical cumulative distribution and the
empirical cumulative distribution.

These methods were introduced by Swain et al.[12] to
estimate the parameters of Beta distributions. Let F(X(i))
be the distribution function of the ordered random
variables X(1)<X(2), ..., X(n) where {X1, X2, ..., X2} is a
random sample of size n from a distribution function F(.).
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Then, the expectation of the empirical cumulative
distribution function is defined as:

(i)

i
E[F(X )] = ; i 1, 2, .... n

n+i


The LSEs of α and θ denoted by LSE and  can beLSE


obtained by minimizing the following function:

(20)
2n

(i)
i 1

i
LS( , ) F(x ; , )

n+i

       
 



with respect to α and θ where F(.) is given by Eq. 8.

Therefore, LSE and  can be obtained as the solutionLSE


of the following system of non-linear equations:

(21)
n

(i)
i 1

LS( , ) i
F(x ; , ) F ' (x; , ) 0

n i 


             


(22)
n

(i)
i 1

LS( , ) i
F(x ; , ) F ' (x; , ) 0

n i 


             


Gupta and Kundu[13] introduced the following weighted
function:

2

i

(i)

1 (n+1) (n+2)
w

Var(x ) i(n i+1)
 



The WLSEs of α and θ denoted by WLSE and  can beWLSE


obtained by minimizing:

(23)
22n

(i)
i 1

(n 1) (n 2) i
WLS( , ) F(x ; , )

i(n i 1) n i

            


with respect to  α and θ,  therefore, these estimators can
also be obtained by solving:

(24)

2n

(i)
i 1

'

WLS( , ) (n 1) (n 2) i
F(x ; , )

i(n i 1) n i

F (x; , ) 0





              

  



(25)

2n

(i)
i 1

'

WLS( , ) (n 1) (n 2) i
F(x ; , )

i(n i 1) n i

F (x; , ) 0





              

  



where:

 
k k 1

1 x'
k

(1 x )
F (x; , ) e ln(x)

(k, ) x

 
   

 

 
  

 

and:

 k 1 k x

'
2

(k, ) (k, (1 x ) ) 1 x ) e e
F (x; , )

[ (k, )]

     



        
  

 

Cramer-von-Mises estimator: The Cramer-von Mises
(CME) method is a type of minimum distance estimation
method introduced by Choi and Bulgren[14]. This method
based on the Cramer-von Mises statistics given by:

2 2
i (i) i0

W n [F(x ) E[F(x )]] dF(x )


 

Boos[15] proved that the Cramer-von Mises statistics can
be given by:

(26)
2n

(i)
i 1

1 2i 1
C( , ) + F(x ; , )

12 n 2n

       
 



Then the CME estimators CME and  of α and θ areCME


obtained by minimizing (Eq. 26) with respect to  α and θ.
These estimators can also be obtained by solving the
following non-linear equations:

(27)
n

'
(i)

i 1

C( , ) 2i 1
F(x ; , ) F (x; , ) 0

2n 


             


(28)
n

'
(i)

i 1

C( , ) 2i 1
F(x ; , ) F (x; , ) 0

2n 


             


Maximum product spacing method: Cheng and Amin[16]

introduced the maximum product spacing (MPS) and
showed that the MPS method can be used as an
alternative to MLE to estimate the parameters of
continuous univariate distributions. This method assumes
that differences (spacings) between the cdf values should
be identically distributed at consecutive data points. Let
the difference is defined as:

(29)i (i) (i 1)D ( , ) F(x ; , ) F(x ; , ), i 1, 2, ..., n        

where, F(x(0); α, θ) = 0 and F(x(n+1); α, θ) = 1. The
geometric mean of the differences can be written as:

(30)
n 1

n 1 i
i 1

G( , ) D ( , )






    

Substituting (Eq. 29) in (Eq. 30) and maximizing the
above expression, we have:

(31)
n 1

(i) (i 1)
i 1

1
g( , ) log(F(x ; , ) F(x ; , )

n+1






       
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Cheng and Stephens[17] showed that finding the maximum
of the geometric mean of the spacings is the same as
finding the minimum of the Moran’s statistics, the
Moran’s statistics given by:

(32)
n 1

n 1 i
i 1

M( , ) D ( , )






    

The MPSEs MPS and of α and θ are obtained asMPS


the simultaneous solution of the following non linear
equations:

' 'n 1
(i) (i 1)

i 1 (i) (i 1)

F (x ; , ) F (x ; , )logG( , ) 1
0

n+1 F(x ; , ) F(x ; , )


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 

       
         



(33)

' 'n 1
(i) (i 1)

i 1 (i) (i 1)

F (x ; , ) F (x ; , )logG( , ) 1
0

n+1 F(x ; , ) F(x ; , )


  

 

       
         



(34)

where, F’α (x, α, θ) and  F’θ (x, α, θ) are defined above.

Anderson-Darling and right-tail Anderson-Darling
methods: Another type of minimum distance estimation
method is the method of Anderson-Darling (AD). This
method was introduced by Al-Zahrabi[18] and Anderson
and Darling[19] and is based on an Anderson-Darling
statistic. The Anderson-Darling statistic is given by:

 2

(xi) (i)2
i0

i )

F F[F(x )]
A n dF(x )

F(x )(1 F(xi )

 




Boos[15] proved that the Anderson-Darling statistic has
computational form which is given by:

(35)

n

(i)
i 1

(i)

1
A( , ) n (2i 1)[log F(x ;

n

, ) log(1 F(x ; , ))]



     
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

Therefore, the ADs AD and  of α and θ can beAD


determined by minimizing (Eq. 35) with respect to α and
θ. These estimators can also be obtained by solving the
non-linear equations:

(36)
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(i)

n 1
(i)
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i 1 (n i 1)

(n i 1)

F (x ; , )

F(x ; , )A( , ) 1
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       

    



(37)

''
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n 1
(i)
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i 1 (n i 1)

(n i 1)
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(2i 1) 0
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1 F(x ; , )




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 
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 

    
       

    



Luceno[20] provides some motivation about AD
statistics and also introduces a modification, namely
Right-tail Anderson-Darling statistics. The Right-tail AD
statistics given by:

 2

i (i)2
i0

i

F(x ) E[F(x )]
RA n dF(x )

1 F(x )

 




Also, the Right-tail AD has computational form which is
given by:

(38)

n

(i)
i 1

n

(i)
i 1

n 1
RA ( , ) F(x ; , )

2 n

(2i 1) log (1 F(x ; , ))





        

   





Hence, the RADs RAD and  of α and θ are obtainedRAD


by minimizing (Eq. 38) with respect to  α and θ. These
estimators can also be determined by solving the
non-linear equations:

(39)

'' n 1
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n 1 i 1(i)

''
i 1 (n i 1)

(n i 1)

F (x ; , ) 1
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    
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


(40)

'' n 1
(i)

n 1 i 1(i)

''
i 1 (n i 1)

(n i 1)

F (x ; , ) 1
(2 i)

F(x ; , ) nRA( , )
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1 F(x ; , )




 

   

 
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  

    
      

    




Simulation: Here, a simulation study is performed to
examine the performance of the different estimates
presented above. The following procedure for evaluating
the efficiency of the estimators is adopted as follow:

C Generate random sample with size n from the
MIPGSD model

C The values obtained in step 1are used to compute the ( , )   
 

considering the MLE, LSE, WLSE, CME, MPS, AD
and RAD estimators

C Repeat the steps 1 and 2 N times
C Using and Θ = α, θ compute the Bias and( , )   

 

the Mean Square Errors (MSE)
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Fig. 3: Bias and MSEs, for the estimates of α = 2:5 and θ= 3:5 versus n when k = 2 for the estimation methods

The results are computed using the nlminb function
(in the stat package) and Nelder-Mead method in R
software. The chosen values to perform this procedure are 
Θ = (1:5, 0:8), N = 5,000 and n = (50, 80, 120, 200, 300).
The simulation studies are put under the same conditions
(initial values and random samples) for different
estimation methods.

Figure 3-5 show how the seven biases, mean squared
errors vary with respect to sample size for k = 2, 3 and 4.
As expected, the Biases and MSEs of estimated
parameters converge to zero as n increases.

Real data application: In this study, we use maximum
likelihood estimate of the parameters to perform the
goodness of fit of the MIPGSD model for two different
data sets to know the potentiality of the new model as
compared to some other existing models.

The first data set represent the relief times (in
minutes) of 20 patients receiving an analgesic and
reported  by  Clark  and  Gross[21].  The  observed  values
are:

C 1.1 1.4  1.3 1.7 1.9
C 1.8 1.6 2.2 1.7 2.7
C 4.1 1.8 1.5 1.2 1.4
C 3.0 1.7 2.3 1.6 2.0

The  second  data  set  was  originally  reported  by
Nassar and Nada[22]. This data set represents the monthly
actual taxes revenue in Egypt (in 1000 million Egyptian
pounds) between January 2006 and November 2010. The
observed values are:

C 5.9  20.4   14.9   16.2   17.2   7.8   6.1   9.2   10.2   9.6
C 13.3  8.5   21.6   18.5   5.1   6.7   17   8.6,   9.7   39.2
C 35.7   15.7   9.7   10   4.1   36   8.5   8   9.2   26.2
C 21.9  16.7  21.3  35.4  14.3  8.5  10.6  19.1  20.5  7.1
C 7.7   18.1   16.5   11.9   7   8.6   12.5   10.3   11.2   6.1
C 8.4   11   11.6   11.9   5.2   6.8   8.9   7.1   10.8

The two data sets are used to compare the MIPGSD
model for values of k = 2 and 10 with four competitive
models such as: Inverted Exponentiated Gamma (IEG)
model[23]:

1

3

1 1 1
f (x) 1 1 exp exp

x x x x


                

      

where, x, θ>0. Inverse Gompertz (IG) model[24]:

2
f (x) exp exp 1

x x x

               
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Fig. 4: Bias and MSEs, for the estimates of α = 2 and θ=  1:5 versus n when k = 3 for the estimation methods

Fig. 5: Bias and MSEs, for the estimates of α= 1:5 and θ = 1 versus n when k = 4 for the estimation methods
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Table 2: The goodness of fit measures for the first data set
Measures
---------------------------------------------------------------------------------------------------------------------------------------------------

Models MLEs -  L AIC BIC HQIC SS
PMk = 2 (α, θ) 3.9812 6.7190 15.4131 34.8263 36.8178 35.2150 0.0219
PMk = 10 (α, θ) 3.6825 12.2518 15.4776 34.95514 36.9466 35.34389 0.0241
IEG(θ) - 0.4449 38.1938 80.3875 82.3790 80.7763 1.1791
IG(α, β) 0.11034 6.1454 16.3915 36.7830 38.7745 37.1718 0.0454
IXG(θ) - 2.7245 33.6363 71.2727 73.2641 71.6614 1.0252
EIR((α, θ)) 1.3176 2.0952 21.1825 46.3650 48.3564 46.7537 0.3791

Table 3: The goodness of fit measures for the second data set
Measures
--------------------------------------------------------------------------------------------------------------------------------------------------

Models MLEs - L AIC BIC HQIC SS
PMk = 2 2.2466 145.6021 188.9398 381.8796 386.0347 383.5016 0.0315
PMk = 10 (α, θ) 2.2463 153.4062 188.9413 381.8826 386.0377 383.5046 0.0316
IEG(θ) - 0.1762 267.5936 539.1872 543.3423 540.8092 3.9434
IG(α, β) 3.5305 14.1447 194.2590 392.5179 396.6730 394.1399 0.1334
IXG(θ) - 11.7903 212.8971 429.7941 433.9492 431.4161 1.5017
EIR((α, θ)) 7.8664 11.1360 189.5877 383.1754 387.3304 384.7973 0.0596

where x, α, β>0. Inverted Xgamma (IXG) model[25]:

2

2 2

1 1
f (x) . 1 . exp

(1 ) x 2 x x

              

where, x, θ>0. Exponentiated Inverse Rayleigh (EIR)
model[26]:

3 2

2
f (x) exp

x x

    
 

where x, α, θ>0. For more simplification, let MIPGSDk (α,
θ) = PMk(α, θ) and to compare the models, we take the
following goodness of fit measures into consideration: the
log likelihood function (-L), Akaike Information Criterion
(AIC), Bayesian Information Criterion (BIC),
Hanna-Quinn Information Criterion (HQIC) and the sum
of squares (SS) defined by:

 
2n

i
i 1

AIC 2L 2q

BIC 2L q ln(n)

HQIC 2L 2q[ln(n)]

i 0.375
SS F x ;

n 0.25

  
  
  

     




where q is the number of parameters, n is the sample size
and estimated cumulative distribution function ofiF(x ; )



theoretical models. The model with the lowest values of
goodness  of  fit  measures  provides  the  best  fit  for 
dataset.

Tests statistics such as Cramer-von Mises W2
n,

Anderson-Darling A2
n, Watson U2

n, Liao-Shimokawa Ln

and Kolmogrov-Smirnov K-S with its respective p-value
are considered in order to verify which distribution fits

better to each data set. These tests display the differences
between the proposed cumulative distribution function
and the empirical cumulative distribution function from
the data to verify the fit of the distributions (p>0.05). For
more  details  about  above  tests  statistics  see
Al-Zahrani[18].

Table 2 and 3, provide the values of the goodness of 
fit measures for the fitted models to both data sets. The
MIPGSD model provides the lowest values for all
measures among all fitted models to both data sets. The
tests shown in Table 4-5% that the proposed model, IG 
model and EIR model fit the two first data set (p>0.05)
and the proposed model shows the lowest test statistics
with the largest p-values. Thus, The MIPGSD model fits
well two data sets and can be considered as a good
competitor against the other models.

Furthermore, seven estimation methods are used to
estimate the unknown parameters of IPGM distribution.
Table 6-7 display the estimates of the MIPGSD
parameters using these estimation methods with its rank
and the values of SS, K-S and its p-value for the two data
sets, respectively. Based on the values of SS, K-S and
p-value in Table 6-7 , the CME estimation method is
recommended to estimate the MIPGSD parameters for
first data set whereas the LSE estimation methods are
recommended to estimate the MIPGSD parameters for
second data set.

Figure 6 and 7 show the Probability-Probability (P-P)
plot of the fitted models for the first data set and the
second data set respectively whereas Fig. 8 and 9 display
the plots of fitted cdfs for the first data set and the second
data set respectively. These plots provide that the
MIPGSD model obtain a greater approximation between
the empirical and the theoretical curves and reveal that the
MIPGSD model provides a better fit than other models for 
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Table 4: The goodness of fit test statistics for the first data set
Statistics
----------------------------------------------------------------------------------------------------------------------------------------

Models W2
n A2

n U2
n Ln K -S p-value

PMk = 2 (α, θ) 0.0269 0.1560 4.5412 0.6137 0.1031 0.9836
PMk = 10 (α, θ) 0.0294 0.1707 4.5417 0.6200 0.1110 0.9661
IEG(θ) 1.2132 5.7234 5.6100 2.1319 0.4791 0.0002
IG(α, β) 0.0527 0.3230 4.5590 0.7783 0.1412 0.8198
IXG(θ) 1.0562 5.0874 5.6879 2.0657 0.4038 0.0029
EIR(α, θ) 0.3976 2.0654 4.9926 1.4152 0.2566 0.1436

Table 5: The goodness of fit test statistics for the second data set
Statistics
----------------------------------------------------------------------------------------------------------------------------------------------

Models W2
n A2

n U2
n Ln K -S p-values

PMk = 2 (α, θ) 0.0333 0.2508 14.2837 0.5818 0.0647 0.9658
PMk = 10 (α, θ) 0.0334 0.2510 14.2837 0.5820 0.0648 0.9657
IEG(θ) 3.9773 18.6459 18.1075 3.5552 0.4958 5.062E-13
IG(α, β) 0.1405 1.1213 14.3999 0.9853 0.1180 0.3842
IXG(θ) 1.5210 7.9638 15.8701 2.4513 0.3004 4.758E-5
EIR (α, θ)) 0.0635 0.4637 14.3339 0.7045 0.0822 0.8203

Table 6: The parameter estimates of the MIPGSD model, SS, K-S and p-value for first dataset at k = 2
Est. Par.
--------------------------------------

Est. Meth.  SS K-S p-value s Rank


MLE 3.9812 6.7190 0.0219 0.1031 0.9836 5
LSE 3.8771 6.4680 0.0228 0.1007 0.9873 4
WLSE 3.6478 5.8106 0.0280 0.1052 0.9797 6
CME 4.2343 7.6692 0.0211 0.0930 0.9952 1
MPS 3.4120 5.2305 0.0370 0.1074 0.9753 7
AD 3.9517 6.6765 0.0219 0.1006 0.9875 3
RAD 4.0641 7.0510 0.0210 0.0977 0.9910 2

Fig. 6: P-P plots for the first data set
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Table 7: The parameter estimates of the MIPGSD model, SS, K-S and p-value for second dataset at k = 2
Est. Par.
------------------------------------------

Est. Meth.  SS K-S p-value Rank


MLE 2.2466 145.6021 0.0315 0.0647 0.9658 6
LSE 2.1891 130.1747 0.0301 0.0567 0.9914 1
WLSE 2.2274 141.6413 0.0295 0.0591 0.9861 2
CME 2.2453 148.4132 0.0295 0.0596 0.9848 3
MPS 2.1106 106.4929 0.0374 0.0694 0.9385 7
AD 2.2468 148.6367 0.0295 0.0602 0.9830 4
RAD 2.2811 161.7276 0.0304 0.0623 0.9759 5

Fig. 7: P-P plots for the second data set

Fig. 8: Estimated pdfs for the first data set

both data sets. We can conclude that the proposed
distribution was the one which best adjusted to the two
data sets.

Fig. 9: Estimated pdfs for the second data set

CONCLUSION

In this study, we proposed a mixture model of inverse
power Gamma shape distributions and studied in detail.
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Some statistical expression for its properties are obtained.
The estimation of distribution parameters by using seven
estimation methods are performed. We present a
simulation study to illustrate the performance of the
estimates. Two data sets also presented for the
demonstration of enhanced flexibility and better fit of the
observed model as compared to some other well-known
existing models.
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