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Abstract: Conditions are given for a Banach algebra A
with involution which insure that every derivation on A is
continuous. To do this, we define and study on a concept
called *-semi-simplicity.

INTRODUCTION

In automatic continuity theory we are concerned with
algebraic conditions on a linear map between Banach
spaces which make this map automatically continuous.
This theory has been mainly developed in the context of
Banach algebras and there are excellent accounts on
automatic continuity theory[1-4] in this associative context.
In Singer and Wermer[5] proved that the range of a
continuous derivation on a commutative Banach algebra
is contained in the Jacobson radical. They conjectured that
the assumption of continuity is unnecessary. In  Johnson[6] 
proved  that  if  is  a semi-simple Banach algebra, then
every derivation on A is continuous and hence by the
Singer-Wermer theorem it is zero.

In this research, we define and study on a unitary
algebra provided with an involution *a notion which
called *-semi-simplicity which generalizes the notion of
semi-simplicity, it rests on the study of certain bilateral
ideals called *-ideals. The interest, therefore is  to restrict
oneself to the level of a family of bilateral ideals instead
of considering all the ideals on the left. This notion of
*-semi-simplicity  will  also  contribute  to  the  study  of

the  automatic  continuity  of  linear  operators on banach
algebras in particular the continuity of derivations. We
will show that on a *-semi-simple banach algebra, every
derivation is continuous (Theorem 2).

PRELIMINARIES

In this study, the algebras considered are assumed
complex, unitary, not necessarily commutative. An
involution *on an algebra A is a mapping: satisfying the
following:

Properties:  (x+y)*  =  x*+y*,  (x*)   =  x,  (xy)*  =  y* x* ,
(λx)* = *x . (x, y) A, C.   

With involution *A is called *-algebra. An ideal of 
*-algebra is called *-ideal if I*fI (then I* = I).  Moreover,
I is said to be a *-minimal (resp. * -maximal) ideal of A
if  is  minimal  (resp.  maximal)  in  the  set  of  nonzero
(resp. proper) *-ideals of A. Observe that if I is an ideal of
A, then I+I*./ , II*, I*I and I1I* are * -ideals of A.
Moreover, if we denoted by the map from A/I to A/I*

defined (a+I) = a*+I; then a well-defined involution on* *
A/I.
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CHARATERIZATION OF
*-SEMI-SIMPLE ALGEBRA

An  algebra  is  called  simple  if  it  has  no  proper
ideals. An *-algebra is called *-simple if it has no proper
*-ideals. We observe that  every  simple  algebra  with 
involution (A, *) is a *-simple. The following
counterexample shows the converse is not true.

Counterexample: Let A be a simple algebra, we denoted
by AN the opposite al-gebra. Consider the algebra B = A
r AN. Provided with the exchange involution defined by: 
*(x, y) = (y, x).  It  is  clear  that  B  is  not  simple,  since,
the  ideals  of  B  are:  {0},  B, {0}×AN, A×{0}.  But  B is
*-simple. Indeed, the only *-ideals of B are {0} and B.

It is therefore, natural to ask under what conditions
the converse is true. It is subject to the following
proposition:

Proposition 1: Let (A, *) be *-simple algebra. If the
involution * is anisotropic, then A is simple. Recall that
involution is called anisotropic if; œa0A; a*a = 0Ya = 0.

Proof 1: Let I be an ideal of A, then I1I* is a *-ideal. It
follows that, I = {0} or A. Indeed, since, A is *-simple 
algebra,  then  I1I* = {0} or A.  If  I1I* = {0},  then x*x =
0 œx0I. As that * is  anisotropic,  then x = 0, a result that
I = {0}. if I 1 I  = A, then I = A.

Proposition 2: Let A is a *-algebra. Then A is a *-simple
if and only if, there exists a maximal ideal M such that,
M1M* = {0}.

Proof 2: Ywe assume A is *-simple. Let M be a maximal
ideal  of  A,  then M1M* = {0} or A. If M1M* = A, then
M = A which contradicts the fact that M is proper  ideal.
Hence, M1M*  = {0}.

ZAssume that, there exists a maximal ideal M such
that M1M* = {0}. Let I is a *-ideal of A. If IfM, then I*

= IfM* where IfM1M*) = {0}. If IéM, then A = M+I and
we have: M* +I = (M*+ I) A = (M*+I)(M+I)fM*M+I = I.
Which implies that M*fI as a result, MdI. Since, M is a
maximal ideal of A, so, it follows that A = I.

Proposition 3: Tidli et al.[7] let A an *-simple algebra  
which  is  not  simple.  Then,  there  exists  a sub-algebra
simple unit I of A such that A = IrI *.

Proof 3: Let I a proper ideal of A. So, it follows that is
I1I * is  a *-ideal.  Since,  A  is  a *-simple algebra, then
I1I  = {0} or A. If I1I* = A, then I = A which is absurd. 
from  where  I1I* = {0}. There  is  also  I+I* is a *-ideal,
then I+I* = {0} or = A. If  I+I = {0}, then I = {0} which
contradicts the fact that I is proper. Therefore, A = IrI*. 

Let J an ideal of A such that JfI. According to what
precedes, A = JrJ*. Let i0I, then there exists j, j’0J such
that i = j+(j’)*. However, i-j = (j’)0I1I* = {0}, from where
i = j, therefore I = J. Consequently, I is a minimal ideal of
A. Let J an ideal of I, then J is an ideal of A. Indeed, let a
0 A and j0J, then it exists i, (i’)* such that a = i+(i’)*. From
where aj = (i+(i’)*)j = ij+(i’)*j. However, (i’)*j0I*I and
I*IfI1I = {0}, it follows that aj = ij0J. Since, I is a
minimal ideal, J = {0} or I = J. Thus, I is a simple  sub
algebra. On other hand, I a unital and if 1 indicates the
unit of A, then there exists e, e’0I such that 1 = e+(e’)*.
Let x0I, we are: x = x1 = xe+x(e’)* but x-xe = x(ej)*0I1I*

= {0}, from where x = xe. In the same way, we checked
that x = ex. Consequently, I a unital of unit e.

Proposition  4:   Let   A   be   a  *-algebra  and  M  is  a
*-maximal ideal which not maximal. Then there exists a
maximal ideal N of A such that M = N1N*.

Proof 4: As M is not maximal, there is a maximal ideal N
of A such that MdN. Since, M   = MfN*, it follows that
MfN1N*. As N1N* is a *-ideal of A, then M = N1N*.

Definition 1: Let A be a *-algebra; We call *-radical of
A, denoted Rad*A, the inter-section of all *-maximals
ideals of A. A is called *-semi-simple if Rad*A = {0}.

Proposition 5: Let I be a *-ideal of a *-algebra A such
that IfRad*A. So, Rad*(A/I) = Rad A/I. In particular,
A/Rad*A is a *-semi-simple.

Proof 5: Let M is a *-maximal ideal of A. We put = A/IA
and = M/I. We have: IfRad*(A)fM. So, from theM
following canonical isomorphism: •A/M which is aA/M
*-simple; it follow that is a *-simple algebra.A/M
Consequently, M/I is a *-ideal *-maximal of A/I. From
where:

 
 

*

* *

Rad A/I = M: M is -maximal ideal of A =*

M: M is a -maximal ideal of A Rad A = Rad (A)/I* 

 

Now, we say that an algebra with involution (A, *) is
a *-semi-simple if A is a sum of *-minimal ideals of A.

Lemma 1:  Let A  be  a *-semi-simple algebra such that
A = 3i0S = Ii where each Ii is a *-minimal ideal of A. If P
is a *-minimal ideal of A, then there is a subset T of S
such that: A = Pr(rj0TIj).

Proof 6: Since, Ii are *-minimal and P…A, then there 
exists some i0S such that Ii+P is a direct sum. Indeed, 
otherwise Ii1P = Ii for all i0S which implies that P = A.
Applying Zorn’ lemma, there is a subset T of S such that
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the collection {Ii: i0T}c{P} is a maximal with respect to
independence: (ri0T Ij)+P = (ri0T IirP). Setting B = ri0T

Ii+P, the maximality of T implies that Ii1B…(0) for all i0S.
Then, the *-minimality of Ii yields that Ii1B = Ii, hence,
IifB for all i0S. Consequently, B = A.

Corollaire 6: For a algebra with involution (A, *), the
following conditions are equivalent:

C A is *-semi-simple
C A is a direct sum of *-minimal *-ideals

Example: Let A4 be the alternating group on 4 letters. 
Consider the group ú[A4] provided with its canonical
involution *defined by *(3g0A4 rgg) = 3g0A4 rggG

1. From[1], 
the de-composition of the semi-simple algebra ú[A4] into
a direct sum of simple components is as follows: ú[A4] =
B1rB2rB3 where each Bi is invariant under*. More
explicitly, B1•ú, B2•C and B3•M3(ú)). In particular, each
Bi is a *-minimal ideal of ú[A4]. Consequently, ú[A4] is
a *-semi-simple algebra.

Now, let A be a *-semi-simple algebra. Since, A is
finitely generated (indeed, 1 generates A), then A has a
finite length. Thus, A = where each Ii is a *-minimall

i 1 iI
ideal of A. It is easy to verify that each Ii is generated by
a central symmetric idempotent element  ei0A (i.e.:  e2

i =
ei and *(ei) = ei) where  1 = 3l

i = 1 ei. Moreover, eiej = 0 for
all i…j. In what follows, we denoted by S the set of central
symmetric orthogonal idempotents of A, i.e., S = {e1, ...,
el} such that Ii = Aei.

Let A = be a *-semi-simple algebra, we havel
i 1 iI

already seen that each Ii is gen-erated by a central
symmetric idempotent ei such that 1 =3l

i = 1 ei. Hence, Ii is
a sub algebra of A with unity ei. Moreover, Ii is a *-simple
algebra for all 1#i#l. Consequently, every *-semi-simple
algebra is a direct sum of *-simple algebras.

AUTOMATIC CONTINUITY

A derivation D on an algebra A is a linear mapping
from A to itself satisfying D(xy) = D(x)y+xD(y) for all x,
y0A. Let D a derivation of a banach algebra X. Then, the
separating ideal δ(D) of X  is the  subset of X defined by:
δ(D) = {y0X/›(xn)nfX: xn60 and D(xn)6y}.

Lemma 2: Sinclair[4] let S be a linear operator from a
Banach space X into a Banach space Y then:

C δ(S) is a closed linear space of Y
C S is continuous if only if δ(S) = {0}
C If T and R are continuous linear operators on X and

Y, respectively and if ST = RS, then R(δ(S))dδ(S)

Lemma 3: Sinclair[4] let S be a linear operator from a
banach space X into a banach space Y and let R be a
continuous operator from Y into a banach space Z. Then:

C RS is continuous if only if Rδ(S) = {0}
C = δ(RS) R S

C There is a constant M (independent of R and Z) such
that if RS is continuous then ||RS||#M R||

Proposition 7: Let A be a Banach *-algebra A. Then if M
is a *-maximal ideal of A, then M is closed.

Proof: If M is a maximal ideal of A, then M is closed.
Otherwise, if M not maximal ideal, then there exists a
maximal ideal N of A such that M = N1N* (Proposition
4). Since, N (resp. N*) is closed, it is deduced that M is
closed in A.

Proposition 8: Let A be a Simple Banach Algebra. Then
all derivations D on A is continuous.

Proof 7: Let δ(D) the separating ideal of D in A which is
simple, so δ(D) = {0} or δ(D) = A. If δ(D) = A, that eA 0
δ(D), consequently 0 0 Sp(eA) ([4]theorem 6-16). From
where δ(D) = {0}. And by Lemma (2) as a result D is
continuous.

Theorem 1: Let A be a *-Simple Banach Algebra. Then
all Derivation on A is continuous.

Proof 8: We have A is *-simple, there exists simple unital
sub algebra I of A such that: A = IrI* (Proposition 3);
following algebraic isomorphism: I•A/I , we deduce that
I is a maximal ideal of A. From where I (resp. I*) is closed
in A.

Consequently, the algebra A/I (resp. A/I*) is a  simple
banach algebra. Since, I is an ideal of A, then, so is
D(I)+I; therefore, D(I)+I/I is an ideal of A/I. As A/I is a
simple algebra, so, D(I)+I/I = or D(I)+I/I = A/I. As I is 0

a maximal ideal of A, then D(I)+I/I = , it followings 0

that D(I)+I =  I, so,  D(I)fI. Consider the fonction onD
A/I  defined  by: (a+I) = D(a)+I. it is clear that isD D
well-defined,   since,  D(I)fI.   Now,  we  show  that isD
a  derivation  on  A/I.  Note  that  it  is  easy  to  show isD
a   linear   operator.    Moreover,   for   a,   b0A, (a+I) D
(b+I) = (ab+I) = D(ab)+I = aD(b)+D(a)b+I. But then,D
(a+I) (b+I)+ ( (a+I))(b+I) = (a+I) (D(b)+I)+(D(a)+I)D D
(b+I) = aD(b)+I+D(a)b+I = aD(b)+D(a)b+I. So, is aD
derivation on the simple banach algebra A/I, then by
proposition (8), is continuous. To show that D isD
continuous, consider the canonical surjection π: A6A/I;
a6a+I which is continuous. In addition, we observe first 
that πND = Nπ because for every a0A, we have πND(a)D
= π(D(a)) = D(a)+I and π(a) = (a+I) = D(a)+I. Nπ isD D D
continuous, then we have δ( Nπ) = {0} and πδ(D) =D

δ(DNπ) = {0} (Lemma 3) and this  implied  that  δ(D)dI. 
Following  the  same  steps,  we  show  that  δ(D)dI*, 
then δ(D)dI1I   =  {0}.  Therefore,  D  is  continuous
(Lemma 2).
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Theorem 2: Let A be a *-semi-simple Banach Algebra.
Then all Derivation on A is continuous.

Proof 9: Since, A is a *-simple algebra, writing (by
Lemma 1) where Ii isa *-minimal ideal of A andl

i 1 iA I 
setting Li = ri…j Ij, then œ1#i#l, Li is a *-maximal ideal of
A. If Li is a maximal ideal, then D(Li)fLi, if Li is not
maximal, then by Proposition (4) that exists a maximal
ideal Ni such that œ1#i#l, Li = Ni1N*

i. Consequently,
D(Li) = D(N1N*

i)fD(Ni)1D(N*
i)fNi1N*

i = Li, œ1#i#l.
Now, consider the function on A/I defined by:  œ1#i#l, D

(a+Li) = D(a)+Li.D
Since, a *-maximal ideal is closed (Proposition 7) and

as mentioned in theorem (1) wehave is a derivation on D
the *-simple Banach algebra A/Li. Then  by  theorem  (1),

is continuous. To show that D is continuous, weD
observe first that πND = Nπ (where π is the canonicalD
surjection from  A to A/I) because  for every a0A, we 
have πND(a) = π(D(a)) = D(a)+L and π(a) = (a+Li)  =D D
D(a)+Li. Since, Nπ is continuous, then we have  δ( Nπ)D D
=  {0}  (Lemma  2)  and  as = δ( Nπ) = {0} (LemmaD D
3); this implied that δ(D)dLi; œ1#i#l. Tt follows that
l = {0}. Consequently, D is continuous.  l

i 1 iD L  
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