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Abstract: In this study, we are exploring fixed point
theory by using complete cone metric space and
sequentially compact cone metric space and proved some
fixed point results.

INTRODUCTION

Using modification of metric space by Huang and
Zhang (2007) defined cone metric spaces by substituting
an ordered normed space for the real numbers and proved
some fixed point theorems of contractive mappings on
cone metric spaces. In general, theory of cone metric
space is used for contractive type mappings and fixed
point  on  his  theory  has  been  developed  by  many
mathematicians (Abbas and Jungck, 2008; Dhanorkar and
Salunke,  2011;  Abbas  and  Rhoades,  2009; 
Abdeljawad   and   Karapinar,   2009;   Altun   et   al., 
2010; Altun and Durmaz, 2009; Azam et al., 2008;
Arshad et al., 2009; Azam and Arshad, 2009). In this
study, we are expanding fixed point results by using
contractive condition given in man result.

Preliminary notes: Huang and Zhang (2007) defined
following cone metric space.

Definition 2.1: Let E always be a real Banach space and
P a subset of E. P is called a cone if:

C P is closed, non-empty and P…0
C ax+by0P for all x, y0P and non-negative real

numbers a, b
C P1(-P) = 0

For a given cone PfE, we can define a partial
ordering#with   respect   to   P   by   x#y   if   and   only 
if y-x#P. x<y will stand for x#y and x … y while xny will
stand for y-x0intP where intP denotes the interior of P(1). 

Definition 2.2: The cone P is called normal if there is a
number M>0 such that for all x, y0E, 0#x#y implies:

|| x || ~ M || y ||

The least positive number satisfying above is called
the normal constant of P(1). It is clear that M$1. In the
following, let E be a normed linear space, P be a cone in
E satisfying int(P)… Ø and ‘#’ denote the partial ordering
on E with respect to P.

Definition 2.3: Let X be a non-empty set. Suppose the
mapping d:X×X6E satisfies:
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C 0#d(x, y) for all x, y0X and d(x, y) = 0 if and only if
x = y

C d(x, y) = d(y, x) for all x, y0X
C d(x, y)#d(x, z)+d(z, y) for all x, y, z0X

Then d is called a cone metric on X and (X, d) is
called a cone metric space (Huang and Zhang, 2007).

Example 2.4: Let E = R2, P = (x, y) E: x, y$0, X = R and
d:X×X6E defined by d(x, y) = (|x- y|, α|x-y|) where α$0
is  constant.  Then  (X,  d)  is  a  cone  metric  space
(Huang and Zhang, 2007).

Definition 2.5; Huang and Zhang (2007): Let (X, d) be
a cone metric space, x0X and {xn}n$1 a sequence in X.
Then:

C {xn}n$1  is  said  to  converge  to  x  whenever  for
every c0E with 0nc there is a natural number N such
that d(xn, x)nc for all n$N. We denote this by limn64

xn = x or xn6x
C {xn}n$1 is said to be a Cauchy sequence whenever for

every c0E with 0nc there is a natural number N such
that d(xn, xm)nc for all n, m$N

C (X, d) is called a complete cone metric space if every
Cauchy sequence is convergent in X

Definition 2.6: Let (X, d) be a cone metric space and
BfX. A point b in B is called an interior point of B
whenever there exists a point  p, 0np such that:

N(b, p) B

where, N (b, p): = {y0X: d(y, b)np}. A subset AfX is
called open if each element of A is an interior point of A.

MAIN RESULTS

In this study, a common fixed point theorem is
proved on a cone metric space under a contractive
condition.

Theorem 2.7: Let (X, d) be a complete cone metric space
and P be a normal cone with normal constant K. Let the
mappings T: X6X satisfy the contractive condition:

(1)d(Tx, Ty) M(x, y), for all x, y X 

where, M (x, y) = max {α1d(x, y), α2d(x, Tx), α3d(y, Ty),
α4[d(x, Ty)+d(y, Tx)]} with α1, α2, α3<1 and 2α4<1. Then
T has a unique fixed point in X and for any x0X, iterative
sequence {Tn(x)} converges to a fixed point.

Proof: Choose x00X:

C x1 = Tx0

C x2 = Tx1 = T2x0

C x3 = Tx2 = T3x0

C xn = Txn-l = Tnx0

C xn+1 = Txn = Tn+1x0

We have d(xn+1, xn) = d(Txn, Txn!1)#max{α1d(xn,
xn!1), α2d(xn, Txn), α3d(xn!1, Txn!1), α4[d(xn, Txn!1)+d(xn!1,
Txn)]} = max {α1d(xn, xn!1), α2d(xn, xn+1), α3d(xn!1, xn),
α4[d(xn, xn) + d(xn!1, xn+1)]} = max {α1d(xn, xn!1), α2d(xn,
xn+1), α3d(xn!1, xn), α4d(xn!1, xn+1)}#α4d(xn!1, xn+1)#
α4[d(xn!1, xn)+ d(xn, xn+1) gives d(xn+1, xn)#α4 d(xn!1, xn).
Taking k = max {α1, α3, α4/1-α4}:

C ˆd(Txn, Txn+1)#kd(Txn!1, Txn)
C #k2d(Txn!2, Txn!1)
C #k3d(Txn!3, Txn!2)
C #k4d(Txn!4, Txn!3)
C #knd(Tx0, Tx1)

So, for n>m, d(xn, xm)#d(xn, xn!1)+d(xn!1, xn!2)+d(xn!2,
xn-3)+, ...,+d(xm+1, xm)#(kn-1+kn-2+kn-3+, ..., +km)d(x1, x0)
#km/1-k d(x1, x0). We get: ||d(xn, xm)||#km/(1-k)K||d(x1,
x0)||.

This implies d(xn, xm)60 as n, m64. Hence, {xn} is a
Cauchy sequence in X and (X, d) is cone metric space. By
the completeness of X, there exists x  in X such that xn6
x* as n64. d(Tx*, x*)#d(Txn, Tx*)+d(Txn, x*)#kd(xn,
x*)+d(xn+1, x*)||d(Tx* , x*)#K(k||d(xn, x*)||+||d(xn+1, x*)||) 
60. Hence, ||d(Tx*, x*)|| = 0. This implies Tx* = x*. So,
x* is a fixed point of T.

Uniqueness: Now if y* is another fixed point of T then
d(x*, y*) = d(Tx*, Ty*)#kd(x*, y*)<d(x , y ), since, k<1.
Which is contradiction. Hence, ||d(Tx*, x*)|| = 0 and x* =
y*. Therefore, the fixed point is unique.

Corollary 2.8: Let (X, d) be a complete cone metric
space and P be a normal cone with normal constant K. 
Suppose a mappings T: X6X satisfies  for some positive
integer n, d(Tnx, T ny)#M(x, y) where, M(x, y) = max
{α1d(x, y), α2d(x, Tx), α3d(y, Ty), α4[d(x, Ty)+d(y, Tx)]}
for all x, y0X with α1, α2, α3<1, 2α4<1. Then, T has a
unique fixed point in X. Now, we can modified Theorem
2.7 by taking (X, d) be a sequentially com- pact cone
metric space.

Corollary 2.9: Let (X, d) be a sequentially compact cone
metric space and P be a normal cone with normal constant
K. Suppose a mappings T:X6X satisfies the contractive
condition d(Tx, Ty)#M (x, y) where, M(x, y) = max
{α1d(x, y), α2d(x, Tx), α3d(y, Ty), α4[d(x, Ty)+d(y, Tx)]}
for all x, y0X with α1, α2, α3<1, 2α4<1. Then T has a
unique fixed  point in X.
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Proof: Choose x00X:

C x1 = Tx0

C x2 = Tx1 = T 2x0

C x3 = Tx2 = T 3x0

C xn = Txn!l = T nx0

C xn+1 = Txn = Tn+1x0

If for some n, xn+1 = xn then xn has a fixed point of T,
the proof is complete. Now, assumng that for all n, xn+1…
xn. Set dn = d(xn, xn+1) then dn+1 = d(xn+1, xn+2) = d(Txn,
Txn+1)#M (xn, xn+1) = M(x, y) = max {α1d(xn, xn+1), α2d(xn,
xn+1), α3d(xn+1, xn+2), α4[d(xn, xn+2) + d(xn+1, xn+2)]} = max
{α1d(xn, xn+1), α2d(xn, xn+1), α3d(xn+1, xn+2), α4d(xn, xn+2) =
α4[d(xn, xn+1) + d(xn+1, xn+2)}= α4/1-α4 d(xn, xn+1)#dn.

We get decreasing sequence dn and bounded by 0,
since, P is regular, there is d*0E such that dn6d* as n64.
From the sequence compactness of X there are
subsequence {xni} of {xn} and {x*}0X such that
{xni}6{x*} as i64.  We have:

ni ni

ni ni

d(Tx ), Tx*) d(x , x*), i 1, 2, ...

So, d(Tx , Tx*) K d(x , x*) 0

 



where, K is the normal constant of E. Hence, Txni6Tx* as
I64. Similarly, T2xni6T2x* as i64. By using Lemma 5, we
have d(Txni; xni)6d(Tx*; x*) as i64 and d(T2xni,
Txni)6d(T2x*, Tx*) as i64. It is obvious that d(Txni, xni) =
dni6d* = d(Tx*, x*) as i64:  Now, we  shall  prove  that
Tx* = x*. If Tx* … x* then d*… 0.

We have d* = d(Tx*, x*)>d(T2x* x*) = lim d(T2xni,
Txni) = lim dni+1 = d*. We have a contradiction, so, Tx* =
x*. That x* is a fixed point of T. The uniqueness of fixed
point is obvious.

Example 2.10: Let X = [0, 1/2), E = R2 and P = (a, b): a
and b are positive be a cone with metric d(x, y) = (|x-y|,
|x-y|). Then (X, d) is a complete cone metric space with

normal cone P. Define T:X6X by Tx = x2/2. Then
condition of Theorem 2:7 satisfying with fixed point 0
and {Tn(x)} converges to fixed point, since x0X.
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