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Abstract: In this study, I will prove that if 00abpe(Pt(µ)),
then under certain conditions over the region G, we
conclude that 00abpe(Pt(µ |G\Δ(α; δ))) for some δ>0.

INTRODUCTION

Recall that G is a crescent region if  where,G W/V
V and W are Jordan regions such that Vf W and V W
is a single point (the multiple boundary point of G). Now 
let, MoG be the inner boundary of the region G (that is MV) 
and let M4G be the outer boundary of G (that is MW ). For
any crescent G, we let VG denote the boundary component
of  and we let mbp(G) denote the multiple boundaryC/G

point of G. Throughout the work that follows we let G be
a crescent region such that M4G = MD and mbp(G) = 1.
This assumption on M4G simplifies our main result, even
though our main result carry through for general
crescents. By a Mobuis transformations of the disk, we
may assume that 00VG.

A complex number z is called a bounded point
evaluation for Pt(µ) if there is a constant M such that
|p(z)|#M.||p||Lt(µ) for all polynomials p; the collection of
all such points is denoted bpe(Pt(µ)). If z0C and there are
positive constants M and r such that |p(w)|#M. ||p||Lt(µ) 
whenever p is a polynomial and |w-z|<r, then, we call z an
analytic bounded point evaluation for Pt(µ); the set of  all
points z of this type is denoted by abpe(Pt(µ)). Notice that

abpe(Pt(µ)) is an open subset of bpe(Pt(µ)) and by the
maximum  modulus  theorem,  each  component  of
abpe(Pt(µ)) is simply connected. If z0abpe(Pt(µ)), then by
the Hahn-Banach and Riesz representation theorems,
there exists Kz in Ls(µ) such that (1/s+1/t =  1) such that 
p(z)  =  Ip(ζ)Kz(ζ)d(ζ)  for  each  poly-nomial  p.  For  f 
in Pt(µ), define  on bpe(Pt(µ)) by f^(z) = If(ζ)Kz(ζ)d(ζ).f̂

Observe that  = f  a.e.µ  on bpe(Pt(µ)) and in fact z÷f̂

is analytic on abpe(Pt(µ)). The set abpe(Pt(µ))f̂ (z)

support (µ) can be thought of as a set of over-convergence
for Pt(µ). I will start  rst by stating two important results
that  appears  by  Al-Hami  (2015)  and  Akeroyd  and 
Alhami (2002), (respectively) and needed for the proof of
Theorem 3.

Theorem  1:  Let  µ  be  a  finite,  positive  Borel 
measure with compact support in C such that
Dfabpe(Pt(µ)). If K is a compact subset of D, then
Dfabpe(Pt(µ|(C\K))).

Theorem 2: Let µ be any finite, positive  Borel  measure
with compact support in C and choose λ in C/support(µ). 
Then λ0abpe(Pt(µ)) if and only if 1/z-λóPt(µ).
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MAIN RESULTS

Theorem 3: Let µ be a finite, positive Borel measure with
support in  such that Mµ = ωdA (dA denotes areaD
measure  on  C)  where  ωL4(dA).  If  00abpe(Pt(µ))  and
1#t<4,  then  for  any  point  α  in  M  D  and  0<r<1,

where Δ(α; r): = {z:|z-α|<r},  Γr : =r( ; r )

t

D/
0 abpe(P | +|s/ )

 
 

MΔ(α; r) γr: = Γr1  and s denotes normalized arclengthD
measure on Γr.

Proof: Choose α in MD and 0<r<1. Let Δ(α; r): = {z: |z-α|
<r}, let Γr: = MΔ(α; r) and let Let ηr rK ( D/ ( ; r)) .   

denote the sweep of µ|D1Δ(α; r)+δα to Γr and let

 observe that ||p|| for any p(D/ ( ; r)))
v | + ;

 
   t tL ( ) L (v)

|| p || || p ||



in P and so 00abpe(Pt(v)). Let Rt(Kr, v) denote the closure
of Rat(Kr) in Lt(v).

Claim: 00abpe(Rt(Kr, v)). Let P denote the collection of 
poly-nomials and let R = {p(1/z-α): p0P and p(0) = 0}. 
Now,  harmonic measure on MΔ(α; r)r

v | (., ( ; r), )     

evaluated at α which is normalized arclength measure s on 
Γr.   Indeed, v|Γr is boundedly equivalent to s, since, dµ =
ωdA (ω0L4(dA)) and so, we assume, for our purposes,
that v|Γr / s. Suppose {pn}fP, {qn}fR and ||pn+qn||L

t
(v) 60

as n64. Then as n64.t
r

n n L (v)| )
|| p +q || 0




Case 1: The 1<t<4; from a theorem of M. Riesz it 
follows that  and as n64. Via.t

r
n L (v)| )

|| p || 0

 t

r
n L (v)| )

|| q || 0



the Mobius transformation S(z) = r/z-α and the fact that
a n d  w h e r er

v | (., ; r, )     D/ ( ; r) D/ ( ; r)
dv | dA |

   
 

ω0L4(dA), one can conclude that: as n64 andtn L (v)
|| q || 0

there is a neighborhood W1 of 0 such that as
1

n W
|| q || 0

n64.  It  follows  that t tn n n n nL (v) L (v)
|| q || || (p +q ) q || p +q || + 

t
n||q || L (v) 0 as n . 

Therefore, since, 00abpe(Pt(v)), there exists a
neighborhood  W2  of  0  such  that   as  n64; 

2
n W

||p || 0

let W = W11W2. We now have that as n64n n W
||p q || 0 

and so, our claim holds for 1<t<4.

Case  2;  t  =  1: As before, we have that t
r

n n L (v| )
||p q || 0


 

as n64. Applying the Cauchy integral to pn+qn over Γr

with evaluation at ζ in we get that: qn60C\ ( , r), 
uniformly   on   compact   subsets   of      andC\ ( , r) 
indeed  as n64, since, dµ = ωdA andtn L ( |D/ ( ; r)

|| q || ) 0
  



ω0L4(dA).  It follows from and our assumption about the
convergence of  to zero that tn n (v)L

|| p +q || tn ( |D\ ( ; r )L
|| p || ) 0

  


as n64. Again applying the Cauchy integral to pn+qn over
Γr  but  this  time  with  evaluation  at  ζ  in  Δ(α,  r),  we
get that pn60 uniformly on compact subsets of  Δ(α, r) and
indeed as n64, since, dµ = ωdA andt

( , r )n ( | )L
|| p || 0

  

ω0L4(dA). An earlier observation we now conclude that 

 as n64. Since, 00abpe(Pt(µ)), it follows that tn ( )L
|| p ||   

pn60 uniformly in some neighborhood of 0. This along
gives us that 00abpe(Rt(Kr, v)). Evidently, our claim holds
for 1 = t<4.  Now by Theorem 1, we may assume that
0ó/support(v).  So, by our claim, 1/zóRt(Kr, v) and hence,
there exists g in Ls(v) (1/s+1/t = 1) such that gzRt(Kr, v)
and yet Ig(z)/z dv(z) … 0.

Let, T be the Mobius transformation T(z) = 1/r(z-α)
(Observe that T(Δ(a, α)) = D) and define τ and h by τ: =
voT-1 and h: = oT-1. Now h0Ls(τ) and gzRt(T(Kr), τ), yet
I h(z)/z+α/r d(τ … 0). So, the Cauchy transform 

h(z)
ĥ( ) : d (z)

z-
  



(which is defined and analytic off the support of tau) is
identically zero in D and in the unbounded component of
C/T(kr) and yet is nonzero in a neighborhood of -α/r. Let 
γ = T(Γr/γr) and notice that if ein0γ and R>1, then Rein is
in the unbounded component of C/T(Kr). Therefore, if
ein0γ, 0<ρ<1 and ρ is sufficiently near 1, then (for ζ =
ρein):

T(D\ ( , r))

1 1 1 1
0 h(z)d (z)

z- z-1/ z- z-1/

h(z)d (z)+ P (z)zh(z)d (z)

 



   
             

 

 


Now:

T(D\ ( , r ))

1 1
h(z)d (z) 0

z- z-1/ 

 
   

  


as ρ61. Since, τ|MD= m by (H, first corollary, page 38), we
therefore have that 0 = limρ61 

-i iP (z)zh(z)dm(z) e .h(e ) 
 

a.e.m on γ. So, h = 0 a.e τ on γ and hence, g = 0 a.e. v on
Γr/γr. It follows that  and so byt

rD\ ( , r )
1/z P ( | +s| 

 

Theorem 2,  The proof is now
r

t

D\ ( , r ) s| ))
0 abpe(P ( | .

   
 

complete. This coming result is not totally new but the
approach is quite different.

Corollary 4: Let G be a crescent such that M4G = MD, 1 =
mbp(G) and  Define μ on G by dμ = |f|tdA|G and f is0 G.

never zero in G. if 00abpe(Pt(μ)), 1#t<4, then for each α
in  MD  with  α  …  1,  there  exists  δ>0  such  that
00abpe(Pt(μ|G\Δ(α, δ)))

Proof: Choose α in MD where α … 1. Choose r>0 such that
r<dist(α, MoG), let Δ(α; r) = {z:|z-α|<r} let Γr = MΔ (α; r)
and let  Now, Γr meets MD at two distinctr r D.   
points-call these points a and b. Since, f0H4(G), f has
nontangential limits a.e.m on MD and so, we may assume
(with a slight alteration in r if needed) that f has nonzero
nontangential limits at both a and b. Choose 0>0, so that,
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0<r/30 and r+0<dist(α, MoG). Let {z0D: r-0<|z-α|<r+0}
and let F = {z0E: dist(z; {a, b})<4:dist(z; MD)}. Now by
our construction of F and the fact that f has nonzero
nontangential limits at both a and b, there is a positive
constant c1 such that |f(z)|t$c1 whenever z0F.
Furthermore, there is another constant c2 such that Δ2: =
{ξ: |ξ-z|<c2|(z-a)(z-b)|}fF whenever z0γr1D. So, for any
polynomial p:

(1)

t 2

r r 2
2

t 2 t
z r z2

2

t tr
F F2

2

1
p(z) (z-a)(z-b) ds(z) |

| c (z-a)(z-b) |

1
p( )dA( ) | | (z-a)(z-b) | ds(z) | p( ) |

(c )

s( )
dA( )ds(z) | p | dA c | p | du

(c )

 

 




    



  



 

  

 

Since, 00abpe(Pt(μ)), we have by Theorem 3 that
00abpe(Pt(v)) where  Hence, there existr(G\ ( ; r ))

v | +s| .
 

  

positive constants ρ, M and N such that:

(2)3| (z-a) | (z-b)| c 0 

and

t

2 2

t t
L (v)

t t 2
rG \ ( , r )

| p(z) | (z-a)(z-b)) M. || p.((z-a)(z-b) || N

{ | p | d + | p | (z-a)(z-b) | ds} 

 

 

whenever p0P and z0Δ(0; ρ). Therefore, by Eq. 1 and 2,
we conclude that  fort t

FG\ ( ; r )
|p(z)| Const.{ | p | d + | p | d }

 
  

every p in P and hence there exists δ>0 (we may choose 
δ = r-0) such that 00abpe(Pt(dμ|G\Δ(α; δ))).
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