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Abstract: In this study, | will prove that if Ocabpe(P'(L)),
then under certain conditions over the region G, we

conclude that Ocabpe(P'(U |gy (. 5))) for some 8>0.

INTRODUCTION

Recall that G is a crescent region if G =W/V where,
V and W are Jordan regions such that Vc W and V~aw
is a single point (the multiple boundary point of G). Now
let, 9,G be the inner boundary of the region G (that is dV)
and let .G be the outer boundary of G (that is oW ). For
any crescent G, we let V5 denote the boundary component
of c/G and we let mbp(G) denote the multiple boundary
point of G. Throughout the work that follows we let G be
a crescent region such that 9.G = oD and mbp(G) = 1.
This assumption on 0,.G simplifies our main result, even
though our main result carry through for general
crescents. By a Mobuis transformations of the disk, we
may assume that 0eVg.

A complex number z is called a bounded point
evaluation for P'(u) if there is a constant M such that
[p(2)|<M.|Ip|IL* () for all polynomials p; the collection of
all such points is denoted bpe(P'(W)). If zeC and there are
positive constants M and r such that [p(w)|<M. ||p]|L'(W)
whenever p is a polynomial and |w-z|<r, then, we call zan
analytic bounded point evaluation for P'(); the set of all
points z of this type is denoted by abpe(P'(1)). Notice that
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abpe(P'(L)) is an open subset of bpe(P(u)) and by the
maximum modulus theorem, each component of
abpe(P'(L)) is simply connected. If zcabpe(P'(L)), then by
the Hahn-Banach and Riesz representation theorems,
there exists K, in L*(u) such that (1/s+1/t = 1) such that
p(z) = [pOK,(O)d(¢) for each poly-nomial p. For f
in P'(), define § on bpe(P'(W)) by f(2) = [f(QK,()d(©).
Observe that f =f a.e. on bpe(P(u)) and in fact z—
f(z) is analytic on abpe(P'(u)). The set abpe(P(h))
support (1) can be thought of as a set of over-convergence
for P'(u). I will start rst by stating two important results
that appears by Al-Hami (2015) and Akeroyd and
Alhami (2002), (respectively) and needed for the proof of
Theorem 3.

Theorem 1: Let p be a finite, positive Borel
measure with compact support in C such that
Dcabpe(P'(W)). If K is a compact subset of D, then

D<abpe(P'(kl(cw))-

Theorem 2: Let 1 be any finite, positive Borel measure
with compact support in C and choose A in C/support(L).
Then Acabpe(P'(W)) if and only if 1/z-A¢P'(p).
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MAIN RESULTS

Theorem 3: Let i be afinite, positive Borel measure with
support in D such that op = odA (dA denotes area
measure on C) where oL"(dA). If Ocabpe(P'(u)) and
1<t<e, then for any point a in 0 D and 0<r<1,

O abpe(P'uls— +Is/, ) where A(«; r): = {z:|z-0|<r}, T,: =

0A(a; 1) v,- = I,n D and s denotes normalized arclength
measure on I',.

Proof: Choose a in oD and 0<r<1. Let A(a; r): = {z: |z-q]
<r}, let T,: = 0A(o; r) and let K, =(D/A(e; r))UT,. Let n
denote the sweep of M|y, »+d0 to T, and let
V=g W observe that 1P, <IPlL., ||p|| for any p

in P and so Ocabpe(P'(V)). Let R'(K,, v) denote the closure
of Rat(K,) in L'(v).

Claim: Ocabpe(R'(K,, v)). Let P denote the collection of
poly-nomials and let R = {p(1/z-a): peP and p(0) = 0}.
Now, VI =o(,A(; 1), a) harmonic measure on dA(a; r)
evaluated at o which is normalized arclength measure s on
I'.. Indeed, v|T', is boundedly equivalent to s, since, du =
®dA (0el>(dA)) and so, we assume, for our purposes,
that V|rr =S. SUppOSE {pn}gP, {Qn}gR and ”pn+qn”Lt(v)_'O

as n—c. Then [P, *d, -, 0 as n-oo,

Case 1: The 1<t<e; from a theorem of M. Riesz it
follows that 1P, ll,, =0 and 19, Il , = 0 as n-e. Via.
the Mobius transformation S(z) = r/z-a and the fact that
Vib=ol, Ara) and Ve = ©dA| where
oelL"(dA), one can conclude that: 19, ll.,, 0 as n~e and

there is a neighborhood W, of 0 such that 19, lz—0 as
n-. It follows that 1%, ll., =P *+a:)=allP,+a, Il +
lla, IL'(v) > 0as n— 0.

Therefore, since, Ocabpe(P(v)), there exists a
neighborhood W, of 0 such that [IP,llz—0 as n-oo;
let W = W,nW,. We now have that lIP, +d, ;=0 as n-«
and so, our claim holds for 1<t<eo,

DIA(T)

Case 2; t = 1: As before, we have that [P, +d, ll;, >0
as n-e. Applying the Cauchy integral to p,+q, over I',
with evaluation at { in C\A(o, r), we get that: g,~0
uniformly on compact subsets of C\A(a,r) and
indeed 19, Il paes) 20 as n-e, since, du = wdA and
oeLl”(dA). It follows from and our assumption about the
convergence of 1P, +4, ., to zerothat P, Il ,pa@n) 0
as n-e. Again applying the Cauchy integral to p,+q, over
I, but this time with evaluation at { in A(a, 1), we
get that p,~0 uniformly on compact subsets of A(a, r)and
indeed 1P, Il . 0 as n-e«, since, du = wdA and
weL>(dA). An earlier observation we now conclude that
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10, lliy—  as n-w. Since, 0cabpe(P'(W)), it follows that
p,~0 uniformly in some neighborhood of 0. This along
gives us that Ocabpe(R'(K,, v)). Evidently, our claim holds
for 1 = t<eo. Now by Theorem 1, we may assume that
O¢/support(v). So, by our claim, 1/z¢R'(K,, v) and hence,
there exists g in L°(v) (1/s+1/t = 1) such that gL RY(K,, V)
and yet [g(z)/z dv(z) # 0.

Let, T be the Mobius transformation T(z) = 1/r(z-o)
(Observe that T(A(a, a)) = D) and define T and h by t: =
voT*and h: = oT™. Now heL(z) and gLR'(T(K)), 1), yet
[ h(z)/z+a/r d(t # 0). So, the Cauchy transform

h(©): = j:%)dr(z)

(which is defined and analytic off the support of tau) is
identically zero in D and in the unbounded component of
C/T(k,) and yet is nonzero in a neighborhood of -a/r. Let
y = T(T,/y,) and notice that if e*’cy and R>1, then Re'* is
in the unbounded component of C/T(K,). Therefore, if
eey, 0<p<1 and p is sufficiently near 1, then (for { =
pe'):

11 11
h(z)de(2)+ [ P,(2)Zh(2)dx(2)

Now:

J‘T(B\A(a‘ )

1 1
(Z_C Z_llgjh(z)dr(z) -0
as p-1. Since, 1|0p- ,, by (H, first corollary, page 38), we
therefore have that 0 = lim ., IPc (z)zh(z)dm(2) = e™.h(e")
a.e.mony.So,h=0a.etonyandhence,g=0a.e.von
I'/y,. It follows that YzeP'(ulyi.+ *sl. and so by
Theorem 2, 0<abpe(P' (i l5z55.4,, - The proof is now
complete. This coming result is not totally new but the
approach is quite different.

Corollary 4: Let G be a crescent such that9,G =dD, 1 =
mbp(G) and 0¢G. Define won G by du = [f[dA|; and f is
never zero in G. if Ocabpe(P'(w)), 1<t<e, then for each a
in oD with a # 1, there exists >0 such that

Ocabpe(P (e, 5))

Proof: Choose a in 0D where o # 1. Choose r>0 such that
r<dist(a, 9,G), let A(a; 1) = {z:|z-a|<r} let T, = A (a; 1)
and let vy, =T, ~D. Now, I', meets oD at two distinct
points-call these points a and b. Since, feH*(G), f has
nontangential limits a.e.m on oD and so, we may assume
(with a slight alteration in r if needed) that f has nonzero
nontangential limits at both a and b. Choose >0, so that,
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€<r/30 and r+e<dist(a, 9,G). Let {zeD: r-e<|z-o|<r+e}
and let F = {zcE: dist(z; {a, b})<4:dist(z; dD)}. Now by
our construction of F and the fact that f has nonzero
nontangential limits at both a and b, there is a positive
constant ¢, such that [f(z)['>c1 whenever zcF.
Furthermore, there is another constant ¢, such that A2: =
{&: |&-z|<c,|(z-a)(z-b)|}<F whenever zey,nD. So, for any
polynomial p:

1
m|c,(z-a)(z-b)

t 2 1 t
[ Ap(EXAE) [ (z-a)(z-b) F ds(2) < | g [elp@®1 (1)

[ @) |(z-2)(z-b)

“ds(z) = [

dA(&)ds(z) < S((Z'))ZIF Il dA<c[.[p du

T

Since, Ocabpe(P'(u)), we have by Theorem 3 that
Ocabpe(P'(v)) where V = Hlgz@my SV Hence, there exist
positive constants p, M and N such that:
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|(z-8)|(z-b)[> ¢, >0

@)

and
Ip(z) | (z-a)(z-b))" < M. ||p.((z-a)(z-b)" e, SN
{J saes Pl dut I L pl (z-a)(z-b) F ds}

whenever peP and zeA(0; p). Therefore, by Eq. 1 and 2,
we conclude that [P(2)| Const{ ¢ sy [P [ du+[ ¢ [p[ du} for
every p in P and hence there exists $>0 (we may choose
8 = r-€) such that Ocabpe(P(dulgu 3))-
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