

Analytic Bounded Point Evaluation Over Crescent Regions

Kifah Y. Al-Hami

Department of Mathematics, University of Bahrain, P.O. Box 32038 Sukhair, Bahrain

Key words: Crescent region, $L^{p}(G)$, $L^{\infty}(G)$, abpe(G)

Corresponding Author:

Kifah Y. Al-Hami

Department of Mathematics, University of Bahrain, P.O.

Box 32038 Sukhair, Bahrain

Page No.: 40-42

Volume: 13, Issue 3, 2019

ISSN: 1994-5388

Journal of Modern Mathematics and Statistics

Copy Right: Medwell Publications

Abstract: In this study, I will prove that if $0 \in abpe(P^t(\mu))$, then under certain conditions over the region G, we conclude that $0 \in abpe(P^t(\mu \mid_{G \setminus \Delta(\alpha; \, \delta)}))$ for some $\delta > 0$.

INTRODUCTION

Recall that G is a crescent region if $G = W/\overline{V}$ where, V and W are Jordan regions such that $V \subseteq W$ and $\overline{V} \cap \partial W$ is a single point (the multiple boundary point of G). Now let, $\partial_o G$ be the inner boundary of the region G (that is ∂V) and let $\partial_\infty G$ be the outer boundary of G (that is ∂W). For any crescent G, we let V_G denote the boundary component of C/\overline{G} and we let mbp(G) denote the multiple boundary point of G. Throughout the work that follows we let G be a crescent region such that $\partial_\infty G = \partial D$ and mbp(G) = 1. This assumption on $\partial_\infty G$ simplifies our main result, even though our main result carry through for general crescents. By a Mobuis transformations of the disk, we may assume that $0 \in V_G$.

A complex number z is called a bounded point evaluation for $P^t(\mu)$ if there is a constant M such that $|p(z)| \le M. ||p|| L^t(\mu)$ for all polynomials p; the collection of all such points is denoted bpe($P^t(\mu)$). If $z \in C$ and there are positive constants M and r such that $|p(w)| \le M$. $||p|| L^t(\mu)$ whenever p is a polynomial and |w-z| < r, then, we call z an analytic bounded point evaluation for $P^t(\mu)$; the set of all points z of this type is denoted by $abpe(P^t(\mu))$. Notice that

abpe($P^t(\mu)$) is an open subset of bpe($P^t(\mu)$) and by the maximum modulus theorem, each component of abpe($P^t(\mu)$) is simply connected. If $z \in abpe(P^t(\mu))$, then by the Hahn-Banach and Riesz representation theorems, there exists K_z in $L^s(\mu)$ such that (1/s+1/t=1) such that $p(z) = \int p(\zeta)K_z(\zeta)d(\zeta)$ for each poly-nomial p. For f in $P^t(\mu)$, define \hat{f} on $bpe(P^t(\mu))$ by $f^*(z) = \int f(\zeta)K_z(\zeta)d(\zeta)$. Observe that $\hat{f} = f$ a.e. μ on $bpe(P^t(\mu))$ and in fact $z \to \hat{f}(z)$ is analytic on $abpe(P^t(\mu))$. The set $abpe(P^t(\mu))$ support (μ) can be thought of as a set of over-convergence for $P^t(\mu)$. I will start rst by stating two important results that appears by Al-Hami (2015) and Akeroyd and Alhami (2002), (respectively) and needed for the proof of Theorem 3.

Theorem 1: Let μ be a finite, positive Borel measure with compact support in C such that $D\subseteq abpe(P^t(\mu))$. If K is a compact subset of D, then $D\subseteq abpe(P^t(\mu|(C_{IK})))$.

Theorem 2: Let μ be any finite, positive Borel measure with compact support in C and choose λ in C/support(μ). Then $\lambda \in \text{abpe}(P^t(\mu))$ if and only if $1/z - \lambda \notin P^t(\mu)$.

MAIN RESULTS

Theorem 3: Let μ be a finite, positive Borel measure with support in \overline{D} such that $\partial \mu = \omega dA$ (dA denotes area measure on C) where $\omega L^{\infty}(dA)$. If $0 \in abpe(P^t(\mu))$ and $1 \le t < \infty$, then for any point α in ∂ D and 0 < r < 1, $0 \in abpe(P^t\mu|_{\overline{D/_{\Lambda(\alpha;r)}}} + |s/_{\gamma_r})$ where $\Delta(\alpha;r) := \{z:|z-\alpha| < r\}$, $\Gamma_r := \partial \Delta(\alpha;r) \gamma_r := \Gamma_r \cap \overline{D}$ and s denotes normalized arclength measure on Γ_r .

Proof: Choose α in ∂D and 0 < r < 1. Let $\Delta(\alpha; r) := \{z: |z - \alpha| < r\}$, let $\Gamma_r := \partial \Delta(\alpha; r)$ and let $K_r = (\overline{D}/\Delta(\alpha; r)) \cup \Gamma_r$. Let η denote the sweep of $\mu|_{D\cap\Delta(\alpha; r)} + \delta\alpha$ to Γ_r and let $v = \mu|_{\overline{D}/\Delta(\alpha; r))} + \eta$; observe that $\|p\|_{L^1(\mu)} \le \|p\|_{L^1(\nu)} \|p\|$ for any p in P and so $0 \in abpe(P^t(v))$. Let $R^t(K_r, v)$ denote the closure of $Rat(K_r)$ in $L^t(v)$.

Claim: $0\in abpe(R^t(K_r,v))$. Let P denote the collection of poly-nomials and let $R=\{p(1/z-\alpha)\colon p\in P \text{ and } p(0)=0\}$. Now, $v\mid_{\Gamma_r}\geq \omega(.,\Delta(\alpha;r),\alpha)$ harmonic measure on $\partial\Delta(\alpha;r)$ evaluated at α which is normalized arclength measure s on Γ_r . Indeed, $v\mid\Gamma_r$ is boundedly equivalent to s, since, $d\mu=\omega dA$ ($\omega\in L^\infty(dA)$) and so, we assume, for our purposes, that $v\mid\Gamma_r\equiv s$. Suppose $\{p_n\}\subseteq P$, $\{q_n\}\subseteq R$ and $\|p_n+q_n\|_{L^1(v)}\to 0$ as $n\to\infty$. Then $\|p_n+q_n\|_{L^1(v)}\to 0$ as $n\to\infty$.

Case 1: The $1 < t < \infty$; from a theorem of M. Riesz it follows that $\|p_n\|_{L^1(v)|\Gamma_1} \to 0$ and $\|q_n\|_{L^1(v)|\Gamma_1} \to 0$ as $n \to \infty$. Via. the Mobius transformation $S(z) = r/z - \alpha$ and the fact that $v \mid_{\Gamma_r} \equiv \omega(., \Delta; r, \alpha)$ a $n d dv \mid_{D/\overline{\Delta(\alpha; r)}} = \omega dA \mid_{D/\overline{\Delta(\alpha; r)}} w$ here $\omega \in L^\infty(dA)$, one can conclude that: $\|q_n\|_{L^1(v)} \to 0$ as $n \to \infty$ and there is a neighborhood W_1 of 0 such that $\|q_n\|_{\overline{W_1}} \to 0$ as $n \to \infty$. It follows that $\|q_n\|_{L^1(v)} = \|(p_n + q_n) - q \|p_n + q_n\|_{L^1(v)} + \|q_n\|_{L^1(v)} \to 0$ as $n \to \infty$.

Therefore, since, $0\in abpe(P^t(v))$, there exists a neighborhood W_2 of 0 such that $\|p_n\|_{\overline{W_2}}\to 0$ as $n\to\infty$; let $W=W_1\cap W_2$. We now have that $\|p_n+q_n\|_{\overline{W}}\to 0$ as $n\to\infty$ and so, our claim holds for $1< t<\infty$.

Case 2; $\mathbf{t} = \mathbf{1}$: As before, we have that $\|p_n + q_n\|_{L^1(v|\Gamma_r)} \to 0$ as $n \to \infty$. Applying the Cauchy integral to $p_n + q_n$ over Γ_r with evaluation at ζ in $C\setminus \overline{\Delta(\alpha,r)}$, we get that: $q_n \to 0$ uniformly on compact subsets of $C\setminus \overline{\Delta(\alpha,r)}$ and indeed $\|q_n\|_{L^1(\mu|D)\overline{\Delta(\alpha;n)}} \to 0$ as $n \to \infty$, since, $d\mu = \omega dA$ and $\omega \in L^\infty(dA)$. It follows from and our assumption about the convergence of $\|p_n + q_n\|_{L^1(v)}$ to zero that $\|p_n\|_{L^1(\mu|D)\overline{\Delta(\alpha;n)}} \to 0$ as $n \to \infty$. Again applying the Cauchy integral to $p_n + q_n$ over Γ_r but this time with evaluation at ζ in $\Delta(\alpha, r)$, we get that $p_n \to 0$ uniformly on compact subsets of $\Delta(\alpha, r)$ and indeed $\|p_n\|_{L^1(\mu|\Delta(\alpha;n)} \to 0$ as $n \to \infty$, since, $d\mu = \omega dA$ and $\omega \in L^\infty(dA)$. An earlier observation we now conclude that

 $\begin{array}{l} \|p_n\|_{L^{s}(\mu)}\!\to\!\infty \quad \text{as } n\!\to\!\infty. \text{ Since, } 0\!\in\!\text{abpe}(P^t(\mu)), \text{ it follows that } p_n\!\to\!0 \text{ uniformly in some neighborhood of } 0. \text{ This along } \text{gives us that } 0\!\in\!\text{abpe}(R^t(K_r,v)). \text{ Evidently, our claim holds } \text{for } 1=t\!<\!\infty. \text{ Now by Theorem } 1, \text{ we may assume that } 0\!\notin\!/\text{support}(v). \text{ So, by our claim, } 1/z\!\notin\!R^t(K_r,v) \text{ and hence, } \text{there exists } g \text{ in } L^s(v) (1/s\!+\!1/t=1) \text{ such that } g\!\perp\!R^t(K_r,v) \text{ and yet } \lceil g(z)/z \text{ d} v(z) \neq 0. \end{array}$

Let, T be the Mobius transformation $T(z) = 1/r(z-\alpha)$ (Observe that $T(\Delta(a,\alpha)) = D$) and define τ and h by $\tau := voT^{-1}$ and $h := oT^{-1}$. Now $h \in L^s(\tau)$ and $g \perp R^t(T(K_r), \tau)$, yet $\int h(z)/z + \alpha/r \ d(\tau \neq 0)$. So, the Cauchy transform

$$\hat{h}(\zeta)$$
: = $\int \frac{h(z)}{z-\zeta} d\tau(z)$

(which is defined and analytic off the support of tau) is identically zero in D and in the unbounded component of $C/T(k_r)$ and yet is nonzero in a neighborhood of $-\alpha/r$. Let $\gamma = T(\Gamma_r/\gamma_r)$ and notice that if $e^{i\phi} \in \gamma$ and R>1, then $Re^{i\phi}$ is in the unbounded component of $C/T(K_r)$. Therefore, if $e^{i\phi} \in \gamma$, $0<\rho<1$ and ρ is sufficiently near 1, then (for $\zeta = \rho e^{i\phi}$):

Now:

$$\int_{T(\overline{D}\setminus\overline{\Delta(\alpha,\tau)})}\!\!\left(\frac{1}{z\text{-}\zeta}\!-\!\frac{1}{z\text{-}1/\overline{\zeta}}\right)\!\!h(z)d\tau(z)\!\to\!0$$

as $\rho \! \to \! 1$. Since, $\tau | \partial_{D=m}$ by (H, first corollary, page 38), we therefore have that $0 = \lim_{p \to 1} \int P_{\zeta}(z) \overline{z} h(z) dm(z) = e^{-i\phi}.h(e^{i\phi})$ a.e.m on γ . So, h = 0 a.e. τ on γ and hence, g = 0 a.e. v on Γ_r / γ_r . It follows that $1/z \not \in P^t(\mu|_{\overline{D}\setminus \overline{\Delta(\alpha,r)}} + s|_{\gamma r}$ and so by Theorem $2, 0 \in abpe(P^t(\mu|_{\overline{D}\setminus \overline{\Delta(\alpha,r)} + sy_r)})$. The proof is now complete. This coming result is not totally new but the approach is quite different.

Corollary 4: Let G be a crescent such that $\partial_{\infty}G = \partial D$, 1 = mbp(G) and $0 \notin \overline{G}$. Define μ on G by $d\mu = |f|^t dA|_G$ and f is never zero in G. if $0 \in abpe(P^t(\mu))$, $1 \le t < \infty$, then for each α in ∂D with $\alpha \ne 1$, there exists $\delta > 0$ such that $0 \in abpe(P^t(\mu|_{G \setminus \Delta(\alpha, \delta)}))$

Proof: Choose α in ∂D where $\alpha \neq 1$. Choose r > 0 such that $r < \text{dist}(\alpha, \, \partial_o G)$, let $\Delta(\alpha; \, r) = \{z: |z-\alpha| < r\}$ let $\Gamma_r = \partial \Delta(\alpha; \, r)$ and let $\gamma_r = \Gamma_r \cap \overline{D}$. Now, Γ_r meets ∂D at two distinct points-call these points a and b. Since, $f \in H^\infty(G)$, f has nontangential limits a.e.m on ∂D and so, we may assume (with a slight alteration in r if needed) that f has nonzero nontangential limits at both a and b. Choose $\epsilon > 0$, so that,

$$\begin{split} &\int_{\pi} \left| p(z) \right|^{t} \left| (z-a)(z-b) \right|^{2} ds(z) = \int_{\pi} \left| \frac{1}{\pi \left| c_{2}(z-a)(z-b) \right|^{2}} \right. \\ &\int \Delta_{z} p(\xi) dA(\xi) \left| ^{t} \right| (z-a)(z-b) \left| ^{2} ds(z) \le \int_{\pi} \frac{1}{\pi (c_{2})^{2}} \int_{\Delta z} \left| p(\xi) \right| ^{t} \\ &dA(\xi) ds(z) \le \frac{s(\gamma_{r})}{\pi (c_{2})^{2}} \int_{F} \left| p \right| ^{t} dA \le c \int_{F} \left| p \right| ^{t} du \end{split}$$

Since, $0 \in abpe(P^t(\mu))$, we have by Theorem 3 that $0 \in abpe(P^t(v))$ where $v = \mu |_{\overline{G}\setminus \overline{\Delta(\alpha;\tau)}} + s|\gamma_r$. Hence, there exist positive constants ρ , M and N such that:

$$|(z-a)|(z-b)| \ge c_3 > 0$$
 (2)

and

$$\begin{split} &|\,p(z)\,|\,(z\text{-}a)(z\text{-}b))^{\frac{2}{t}} \leq M.\,\|\,p.((z\text{-}a)(z\text{-}b)^{\frac{2}{t}}\,\|_{L^{t}(\nu)} \leq N \\ &\{\int_{\overline{G}\cup\overline{A(a,\nu)}}|\,p\,|^{t}\,d\mu + \int_{\gamma t}|\,p\,|^{t}\,(z\text{-}a)(z\text{-}b)\,|^{2}\,ds\} \end{split}$$

whenever $p \in P$ and $z \in \Delta(0; \rho)$. Therefore, by Eq. 1 and 2, we conclude that $|p(z)| \operatorname{Const.}\{\int_{\overline{G}\setminus \overline{\Delta(\alpha;\tau)}} |p|^t \, d\mu + \int_F |p|^t \, d\mu\}$ for every p in P and hence there exists $\delta > 0$ (we may choose $\delta = r - \epsilon$) such that $0 \in abpe(P^t(d\mu|_{G\setminus \Delta(\alpha;\delta)}))$.

REFERENCES

Akeroyd, J. and K. Alhami, 2002. Overconvergence and cyclic vectors in Bergman spaces. J. Operator Theory, 47: 63-77.

Al-Hami, K., 2015. Singular inner function and analytic bounded point evaluation. Int. J. Pure Applied Math., 105: 427-430.