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Abstract: In this thesis we consider an epidemic model with a constant removal rate of infective individuals is
proposed to understand the effect of limited resources for treatment of infective on the disease spread. It 1s
found that it 1s unnecessary to take such a large treatment capacity that endemic equilibria disappear to
eradicate the disease. Tt is shown that the outcome of disease spread may depend on the position of the initial
states for certain range of parameters. It 1s also shown that the model undergoes a sequence of bifurcations
mcluding saddle-node bifurcation, subcritical Hopf bifurcation.
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INTRODUCTION

Infectious diseases have ever been a great concern
of human kind, since, the very beginning of our history.
At present, we still have to deal with plagues and
diseases. Mathematical epidemiclogy contributed to the
understanding of the behavior of infectious diseases its
mnpacts and possible future predictons about its
spreading. Mathematical models are used in comparing,

planning, implementing, evaluating and optimizing
various detection, prevention, therapy and control
programs.

In some locations, the incidence of some diseases,
such as chickenpox, mumps and poliomyelitis, goes up
and down every year. Because of the observed periodicity
in the incidence of many diseases, there has been great
mnterest in determining how periodic solutions can arise in
epidemiological models.

Treatment including isolation or quarantine is an
umportant method to decrease the spread of diseases such
as measles, ATDS, tuberculosis and flu (Feng and Thieme,
1995).

By Wu and Feng, Hyman and Li (1998) in classical
epidemic models, the removal rate of infective 1s assumed
to be proportional to the number of the infective. This is
unsatisfactory because the resources for treatment should
be quite large. Tn fact, every community should have a
suitable capacity for treatment. If it is too large, the
community pays for unnecessary cost. If it is too small,
the community has the risk of the outbreak of the disease.
Thus, it 13 mnportant to determine a suitable capacity for
the treatment of a disease.

In this study, we suppose that the capacity for the
treatment of a disease in a community is a constant r. In
order to easily understand its effect we consider a case
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that the removal rate of mfective equals r. This means that
we use the maximal treatment capacity to cure or 1solate
infective, so that, the disease is eradicated. This can occur
if the disease is so dangerous that we hope to wipe out it
quickly or the disease spreads rapidly, so that, the
treatment capacity 1s insufficient for treatment in a period
(flu, for example).

It 1s also shown that the model undergoes a sequence
of bifurcations. The qualitative structure of the flow on
the vector field under investigation may change as the
parameter values are varied. In particular equilibrium
points may be created or destroyed or their stability may
change. This qualitative change in the dynamics of the
system 18 called bifurcation and the parameter values at
which these changes occur are called bifurcation points.
There are different types of bifurcations:

+  Saddle node bifurcation

s Pitchfork bifurcation

s Trans critical bifurcations
»  Hope bifurcation

In a saddle-node bifurcation as the bifurcation
parameter passes through the bifurcation point, two
equilibria disappear, so that, there are no equilibria
afterward. One of the two equilibria 1s stable and the other
1s unstable before they disappear.

In a pitchfork bifurcation, there are two stable
equilibria separated by an unstable equilibrium. A system
where there two different stable equilibria is said to have
a property of bi-stability. When bifurcation point is
passed, there 15 only one stable 13 equilibrium. This
bifurcation 1s referred to as supercritical pitchfork
bifurcation. On the other hand if the stability of
supercritical pitchfork bifurcation is reversed, subcritical
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pitchfork bifurcation is obtained where there are two
unstable equilibria separated by stable equilibriwm, until
the bifurcation point is passed.

In trans critical bifurcation, there two equilibria, one
stable and the other unstable. When the bifurcation point
15 passed there 1s an exchange of stability, the unstable
equilibrium becomes stable and the stable equilibrium
becomes unstable.

Literature review: Over the past 100 years, mathematics
has been used to understand and predict the spread of
diseases, relating important public-health questions to
basic transmission parameters. From prelustory to the
present day, diseases have been a source of fear and
superstition.
dynamics requires a variety of mathematical tools from

A comprehensive picture of disease

model creation to solving differential equations to
statistical analysis. Although, mathematics has been so
far, done quite well in dealing with epidemiology but there
15 no denying that there are certain factors which still lack
proper mathematization (Brauer and van den Driessche,
2001).

Almost all mathematical models of diseases start
from the same basic premise, that the population can
be subdivided of distinet classes,
dependent upon their experience with respect to the

into a set
disease. One line of investigation classifies individuals as
one of Susceptible (S); those who have never had the
illness and can catch it, Infectious (1): those who currently
have the illness and are contagious; Recovered (R):
mndividuals who have acquired a permanent immunity to
the disease. Such a model is termed a SIR a model.
Epidemic

researchers.

models have been studied by many
The fust model which computes the
theoretical mumber of individuals
contagious illness in a closed population over time
was proposed by Kermack and McKendrick (1927),

Xiao and Ruan (2007), Derrick and Van Den Driessche

infected with a

(1993).
SIR Model 18 easily written using Ordinary
Differential Equations (ODEs) which implies a

determimistic model (no randomness 1s involved, the same
starting conditions give the same output) with continuous
time (as opposed to discrete time). The rate of new
infections can thus be defined as ,SI where , is a parameter
for infectivity. Infected individuals are assumed to recover
with a constant probability at any time which translates
into a constant per capita recovery rate that, we denote
with r and thus, an overall rate of recovery rI. Based on
these assumptions, we can draw the scheme of the model

(Fig. 1).
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S BSI

Fig. 1: The transformation chart of SIR Model

The scheme translation to ordinary differential ecuation:

ds

— =-51
dt b

dl

— =Sl
dt B

R =1l

dt

where, S(t), R(t), I(t) represent the number of susceptible,
infective and recover individuals at time, respectively. The
parameters and r are called transmission rate and recovery
rate, respectively. The interpretation of this model 1s
straight forward. The population of susceptible (healthy)
individuals diminishes through their interaction with the
infective ones, the number of which correspondingly
increases through the mechanism. On the other hand, the
population of mfective mdividuals diminishes, since,
some individuals are cured and thus, populate the class of
recovered. The model 1s derived under three main
assumptions:

A closed population (no births, no deaths and no

migration)
Spatial homogeneity
Disease is transmission by contact between

susceptible and infected individuals. The size of the
population (S+I+R) is therefore, constant and equal to
the itial population size which we denote with the
parameter N.

After Kermack-McK endrick Model, different epidermic
models have been proposed and studied in the literature
(Capasso and Serio, 1978; Ruan and Wang, 2003;
Liu « ., 1987; Hethcote ..., 1981; Hethcote and Tudor,
1980; Hethcote and Levin, 1989, Hethcote and Van den
Dressche, 1991; Beretta and Takeuchi, 1995, 1997; Beretta
ey, 2001; Ma s, 2002; Xiao and Ruan, 2007, Bogdanov,
1981a, b).

MODEL FORMULATION AND ANALYSIS

In tlis study, we present model description,
formulation and analysis. We consider that the total
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population is constant and that a small number of
infected mdividuals are
population.

mtroduced mto a large

Compartment models: The models of the behavior of an
infectious disease in a large population of people consider
each individual as being in a particular state. These states
are often called compartments and the corresponding
models are called compartment models. A compartmental
model is one for which the individuals in a population are
classified mto compartments depending on their status
with regard to the infection under study.

A compartment model provides a framework for the
study of transport between different compartments of a
system. The simplest compartment models assume a
person can be in one of only three states, either
Susceptible (3), S, the susceptible which can get the
disease or I; the Infected who have the disease and can
transmit it or R, the removed, either recovered and immune
or isolated. The three state model 1s called the SIR
Model.

Let S(t), I(t), R(t) be represent the number of
susceptible, infective and recovered mdividuals at time,
respectively. If we think about the process of a disease
that it’s the SIR framework, we have a flow of mdividuals
from the susceptible group to the mfected group and then
to the removed group.

The assumptions and parameter: The followmng
assumptions and parameter are made in order to construct
the model:

The population has constant size N, the natural death
rate of the population is d, the natural recovery rate of the
infective individuals ,, A is the recruitment rate of the
population, the transmission rate denoted.,.

The number of infected increases at a rate
proportional to both the number of infected and the
susceptible; .SI with 0. The number of the susceptible
decreases at this same rate.

The rate of removal of infected to the R class is
proportional to the number of mnfected only; I with >0.
The number of removed increases at this same rate.

The incubation time is negligible, so that, a
susceptible that catches the disease becomes nfectious
immediately.

If we assume that individuals are mixed randomly
then each potential transmission may be from an mfected
person to a susceptible person which results in a new
infected person. Or a transmission may occur from an
mnfected person to another infected person which results
is nothing happening, since, the person is already
infected. Or the potential transmission may occur from an
mnfected person to a recovered or immune person. In this
case again nothing changes.
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The model equation: Now by using ordinal differential
equation and above assumption; The mathematical model
of SIR Model is:

ds

— = A-dS-ASI

° BsL,

% = BSI-(d+)I-h(), M
dR

= wI+h(D)-dR
& YI+h(I)

where, all parameter are positive and h(I) is the removal
rate of infective individuals due to the treatment of
infective. We suppose that the treated infective become
recovered when they are treated m treatment sites.
Suppose that:

r for =0

OforI=0

h(I) = { (2)

where, >0 is a constant and it represents the capacity
of treatment for infective. This means that we use a
constant removal rate for the infective until the disease
disappears.

Suppose that (S(t), I(t), R(t)) is a solution of (1). And
N(t) is the population at any given time. This must always
be positive because a negative population does not
biologically meaning. Therefore, N>0, this implies S(t) >0,
I(t)=0, R{t) =0 for O.t<t. Thus, the lower bound for S, I and
R 15 0. To find the upper bound of the system we consider
the system Eq. 1 in the total population size 1s:

N =S+I+R and N' = (S+I+R)' =
A-dS-dI-dR = A-d(S+I+R) < A-dN

The solution of the linear differential equation then
becomes:

N(t) = N(0)e '“+%(1-e Y
It follows that ) ¢y thatmeans N 1s bounded. Let:
oo - d

A
(S,LR)eR*:S+[+R = —
r= d

such that $>0,I>0,R >0

Therefore, . 1s region positively mvariant with respect
to system (Eq. 1). The purpose of this study 15 to show
that this removal rate has significant effects on the
dynamics of. Since, the first 2 equations in Eq. 1 are
independent of the variable R. Tt suffices to consider the
following reduced model:
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o _ A-dS-PSL,
dt

3)

d
= = RSI-(d+y)L-r
" BSI-(d+y)

It 1s assumed that all the pearameters are positive
constants.

Equlibriua and their stability: Now we mvestigate the
existence of equilibria of system (Eq. 3). System (Eq. 3)
has always a disease-free equilibrium and unique endemic
equilibrium exist. The equilibrium points of the system can
be obtained by equating the rate of changes to zero:

ds dlI dR
d_i:E:EZO’ this mean,

(4)
{A—dS-BSI—O

BSI-(d+)-r =0

The disease free equilibrium: The equilibrium state in
the absence of infection is known as disease free
equilibrium. Such that, I = 0 1n the first equation of system
(Eq. 4) then, we get S = A/d. Therefore, the disease free
equilibrium is:

A
E, (E’ 0)

The basic reproduction number (R): The basic
reproduction number of an infectious disease is a one of
the fundamental concepts in mathematical biology. It 1s
defined as the average number of secondary infections
produced when one infected individual is introduced into
a host population where everyone 1s susceptible.

The stability analysis of disease-free equilibrium
determines the thresholds (reproductive number) of the
epidemic. By linearizd the system about the point (E). The
Jacobean matrix of the system is given by:

A
-d-n i
8 d

The Eigen values are:

A
Ay g = 'da'(Bd'd'\’]

Thus, the basic reproduction number R, is often as
the threshold quantity that determines whether or not an
mfectious disease will spread through a population. Since,
S = A/d forI =0, R 1s the product of the number A/d of

susceptible at the disease-free equilibrium state, the
transmission coefficient and the average residence time
1/d+, in the infectious individuals class. The basic
reproductive number of the system (Eq. 3) 1s:

__Ba
d (d+v)

0

If R<1 there is a disease free equilibrium which is
asymptotically stable and the infections dies-out. If R>1
the usual situation 1s there 1s an endemic equilibrium
which 1s asymptotically stable and the infections persist.

The endemic equilibrium state: The equilibrium state with
the presence of infection (i.e., 1.0) is known as endemic
equilibrium or non-zero equilibrium. Now to find the
endemic equilibrium we substitute: S = A/d+l mto the
second equation of system to obtain the quadratic Eq. 5:

B (d+y) PHPBA-tPyd-d*-rd =0 (3)

Since, the basic reproductive number of the system
Eq. 3 is:

R,-—PA e m-o_Pr
d(d+) d(d+y)
Then, Eq. 5 can be write as:
Bre g amm—— —o (6)
d d+y

R. 1s the reproduction number of Eq. 3 in the absence
of the removal rate:

Case 11If R, <lor0<fR,-1<+H (7
Then, Eq. 6 does not have a positive solution:
Case 2 If R, >1and|JR, -1’ =H (8)
Then, Eq. 6 has 1 umque positive solution:
Case3 If R, >1and (R, -1 >H>0 9

Then, Eq. 6 has two positive solutions. Thus, Eq. 3
does not have a positive equilibrium if R.1. Furthermore,
Eq. 8 implies that Eq. 3 has one positive endemic
equilibrium and Eq. 9 implies that Eq. 3 has two endemic
equilibria. If N = S+1, we have:

dl\tll = A-r-yl-dN, € A-r-dN,
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Again that positive solution of Eq. 3 is bounded.
Note that the non negative T-axis repels positive solutions
of Eq. 3 and that there 15 no equilibrium on the non
negative S-axis. If R.1 or Eq. 7 holds 1t follows that I (t)
becomes 0 in finite time, 1.e., the disease disappears in a
fimite time. Now, we propose the following assumption:

H, =R, >1and0< H <(\fR , -1)*

If H. then, Eq. 3 two endemic equilibrium, E = (S, 1)
and E. = (3, L), where:

d A
I, =— (R, -1-H-of(R,-1-H)?-4H, 8, = ———
2B d+B 1
I,= i(Ru-l-H+,/(RU-1-H)2-4H, 8, = A
2B d+p1,

Although, the endemic equilibria occur under the
assumption (H), we will show that the disease can
disappear in a range of the parameters. This means that it
is unnecessary to increase the removal rate r to H = (\/R_D -1y
to make the disease disappear.

STABILITY BY LINEARIZATION

For most dynamical systems the equlibrium pomt
(fixed pomt) of a system of non-linear differential
equations plays an important role in the analysis of the
models we examine the behavior of the solutions of the
autonomous near an isolated critical point (x, y.) where f

xy)=gx.y) =0

dx

== f(x,
" (x.y)
dy
Yo
m g(x.y)

The first step in investigating the behaviour of tra
jectories of the system (Eq. 10) near a critical point
(x, y) is by approximating the non-linear system with an
appropriate linear system, whose trajectories are easy to
mvestigate. The crucial question 13 whether the tra
jectories of the linearized system are good approximations
to those of the nonlinear system. First, we explain what 1s
meant by a nonlinear system being close to a linear
system. We assume that the functions f and g are
continuously differentiable in a neigh-bourhood of (x, ).
Then, the Taylor formula for f and g about the critical
point (%, v.) gives:

32

dx
E =1 (Xu Yo )(X'Xu )Jrfy (Xu Yo )(Y'yu )JrF(X'XU »¥Y-Yo )
dy
E =8, (%, ¥, )(x-%, )+gy (X, ¥ M-y )+ (X%, ¥y, )
U=X-X,v= sothat%—d—uan d—y—ﬁ

—E Y=Y Tdt dt dt dt

(10a)
Then in matrix form, Eq. 10a becomes:
fy (XU > YU )

w {u]{l‘"(u,v) } (10b)
v gy(XD>YD) v G{u,v)

The matnx 1s the jacobean matrix of the system in
Eq. 10 evaluated at critical point (x, v.):

fx(XU>YU)
g. (X5, ¥,)

fy (X‘U > YU )

(10c)
g, (%, ¥, ):|

fx(XU>YU)
g. (X0, ¥,)

Definition: The autonomous system (Eq. 10) is called
almost linear at the pomnt provided that it can be put in
the form:

dx

— = a (XX )tb(y-y tF(xx..yy,)

dt (10d)

d
d—)t/ = ¢ (x-x Fd(y-y, HG (XX, y-v,)

Where:

fix,y)
£ix,y)

g (x,y)
g (x,y)
(X%, y-¥.)
(%X, y-y)

GHeo oa

Have the property that:

) R vy
Jee.3-Geg 0|0 ||(X: Y)'(Xov yU)H

That is in the neigh-boarhound of (x, y) the
expressions F(x-x, y-y) and G(x-x, y-y) are small in
comparison with ||(x, v)-(x, v.)|| which 1s itself small. Thus,
when (x, y) 18 near the point of (x, y.) the nonlinear system
in Eq. 10 is “close” to the linearized system. The system
in (x, y) is called the linearization of about the critical
pomt:
dy

cx+d
dt Y

ax+by,

Theorem 3.5:1: E (5, 1) is saddle whenever it exists and
E.(8.1)1s center.
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Proof: We begin by analyzing the stability of these two
equilibria. The Jacobin matrix of Eq. 3:

s o8
P
ar - ar
s ol

Now, at (3, 1), we get:

- -d-BI,  -BS,
b BI1 BS1'd'Y

Note that, from Eq. 3 A-dS =pS], ={d+l+1, we have

5 - A-(dL r  thus, we have det:
d

(J1 ) :(—CI—BI1 )([?:Sl-d-y)ﬂ?)zsll1 =
BA+2B(d+HI, +HB+d(d+y) =

d(d+yi[-R, +%+H+l] =

«dw{4n+ff{d0%44herLHf4H+HHJ}—

2B

d(d+P)[R, +R ,-yf(R,-I-HY -4H }

d(d )[R ,1-H)2-4H ] <0

It follows that (3, I) is saddle point. And the Jacobin
matrix of Eq. 13 at (3, 1) is:

J|(Sz 712) _ {'d'Blz _BSZ }

Blz Bsz '(d+Y)
By the same argument, we obtain det:

(1,) =A@+l (R,-1-HY-4H ] > 0

Thus, E. (S, L) it’s center.

Theorem 3.2.2: Tf H hold. Then, Eq. 4:

3
E, Stable if either BA-3d2-dy-2d <pr {11
¥

3
Br < BA-3d* -dy-£
Y

Pr< ;{2BA+(2d+y)(d+y)(1— }1+ (;1%:; ; ﬂ

(12)

E, unstableif :

3
Br < BA-3d? -d\(—£ and
¥

Br > ;{2BA+(2d+\/)(d+y)(l- ,H (ji\)z ﬂ

Proof: Since, we have s, - A-(dHr and the trace of T 1s:
d

(13)

trJ,)= 'zd'BIz "'Bsz V=
L d—BIZ+B[ A—(dJcrly)Iz—r ]_Y _
24" 9B, +BA-B(dHIL Prdy 14

d
_[ 2dB+«(BJI _2d*-BA+rpd

d d

Thus, the trace is negative if 2d-A+r+.d.0 let:
2d®-BA+Pr+yd<0 (15)

Let us find the condition under which the tr (I) = O set:

D,

[l

Bl2d+y)

d(d+v)
d+y

d
—+1-RU+H)

Equation 14 implies that tr (I) = 0 is equivalent to:

2
_ 2d4°BA+Pr+vd _D

2 1

B(2d+v) (16)
2d L ¥
2d 1y

If D, A-

R,-1-H
i= 2d+y ®, )

Tt follows from the definition of L that tr (1) = 0 is

equivalent to:
D, = J(R,-1-H)'-4H (17)

Thus, the set of tr (1) = 0 i3 empty if:

Han-l-E (18)
Y
Let:
HeR,1- 2 (19)
¥

Taking squares on both sides of Eq. 17 and
simplifying the resulting equation, we obtain:
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D;A rB+{(-3yd-2BA-v* 2d* )r+BA*-2A4d* =0 (20)

The using quadratic equation:

r= ZLB[@BA*(zdﬂ’)(d*Y)i

J2BAH2A )+ -ABA(PA T 2Ad")]

r= i[sz+(2d+g>(d+9>i<2d+9)(d*g) w

Hence:

n [
r= B {28A+(2d+y)(d+y)(li 1+ (ag H

In view (Eq. 15):

_1 ) f 4pA 21
=2 {26A+(2d+y)(d+y){l 1+(d+g)2 H (21)

By definition of D, we D. have:

tr(Jz) = '(2di+YB)Iz'D1 =

d
e DR HD,)

Thus, Eq. 18 implies tha tr (I)<0. Therefore, E. 1s stable
1f 21 holds. Since:

(22)

B

(Ry-1-H)*-4H)-Dj = —————
A2d+y)d+y)

D,

It follows that tr (J.)<0, if Eq. 12 1s valid and that tr
(1)=0, if Eq. 13 hold.

Local stability of the disease-free and endemic steady
states: This study explams the method of local (or linear)
stability analysis of equilibmia mn models with several
differential equations. We obtain in this section 15 a
generalization of the stability.

If system does not have a limit cycle it 13 easy to
classify its dynamical behaviour. If is unstable, any
positive semi-orbit except the two equilibria and the stable
manifolds of intersects the positive S-axis in fimte time. A
typical phase portrait 1s shown m Fig. 4.

If E 1s stable, there 1s a region whose boundary
mcludes the two stable mamfolds of E such that any
positive semi-orbit inside this region tends to E. as t tends
to infimty and any positive semi-orbit outside this region
meets the positive S-axis i a fimte time. A typical phase
portrait 1s shown n Fig. 2-4.

34

0.6

0.54

0.44

0.34

o | Stable disease _ Unstable disease-Free equilibrium_
Free equilibriun/l/

Infective fraction (i)

Fig. 2: A schematic of a bifurcation for SIR Model at there
is a trans-critical bifurcation

9

8t

Values (1)

10 12

Variables (S)

Fig. 3: An unstable periodic solution exist where A = g,
d=01,.=1,.=1,r=51

In the absence of the infectious diseases the model
has unique diseases-free state E. To establish the local
stability of meet at E (A/d, 0), we use Jacobean of the
model evaluate at E then determine the Eigen values of
the corresponding Jacobean which are a function of the
model parameters. The Jacobean matrix of the system
Eq. 1 1s given by:

-dn Bé
] _ d
S A
B 0 —-d-y-A
By d
The Eigen values are:
A
Aoy = -d,-(BE-d-Y)
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Q2
6 / G2
5 E
Lo
= 4 -
g P
S 2
g \
3r 1
|
G2
2 o
1t -
oL i L P S i
o 1 2 3 4 5 6 7 8 9 10
Variables (S)

Fig. 4: The diagram of 3 and Q. split from the limit cycle
and the diagram of G and G.

In the following theorem established the local stability of
the disease free steady state.

Theorem 3.5.1.1: The disease-free equilibrium E is locally
asymptotically stable if R<1 and an unstable 1f R>1.

Proof: Since, from above .<0 the diseases free steady
state E.1s locally asymptotically stable if .<.0. Nothing that
SO0if and only if R<<1. If R>1 then. is positive. Therefore,
E. 15 unstable.

Theorem 3.5.1.2: The endemic equilibrium E (S, 1) 1s
locally asymptotically stable.

Proof: We begin by analyzing the stability of these two
equilibria. The Jacobin matrix of Eq. 3:

s o8
P
ar - ar
s ol

Now by inserting (S, 1), we get:

| _[-eB s,
2{ Blz Bsz'd'\[}

Note that from Bq, 3A-dS=3= (dH) b, we have s - AT
Then trace of I. 1s: d

tr (Jz) = '2d'BIz+Bsz Y=
~2d-L,+p [ A'(d':/) L }_

—2d*-dBL+BA-B(d+y)1,-Pr-dy _
d
(2dB+B I_zdz-BA+Br+«/d
d ’ d

Thus, the trace is negative if 2d-A+ar+.d.0
and the det:

(1,) = (-d-BL, XPBS,-dn+H*S,1, =
BA+2B(d+p)I, +rp+d{(d+y) =
201,

AR+ 2 HH] =
d(dW){—RU J‘f{fﬁ (R, -1-H (R, - <411 +H+1ﬂ -

d{d+)[-R, +RU,/(RU --HY -4H | =
d(dw)[,/(RU-l-H)z-m] >0
det (J,)=d (dw)[,/(RU-l-H)2-4H]>0

det(T,3=d (cl+y)[,/(RD -1-HY -4H =0

Hence, the trace (I)<0 and det (J)=0. This implies
that the egien value of Jacobean matrix I(E) have
negative real part. This means E. is locally asymptotically
stable.

Global stability of the disease-free and endemic steady
state: The global stability of both the disease-free
and endemic steady state is proven by Lyapunov
functions.

Theorem 3.5.2.1: If, R.1, then the diseases-free steady
state B(A/d, 0) 1s globally asymptotically stable and if
R>1 then E is unstable. Let proof by Lyapunov functions
let:

vis,D =1

dv  _ds dI

R s

dt dt dt

BA-d(d+Ixd

(d+y)[R,S$-1]1-rd <0, for R, <1

IR, <1,@:0,iff1 =0
dt

IfR, :1,@:0,iffs:é
dt d
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Hence, v is a Lyapunov function in .. Therefore, B, is
globally asymptotically stable.

Theorem 3.5.2.2: If the endemic equilibrium of system
(Eq. 1) exists and if is H holds, then E = (S, T) it is globally
asymptotically stable. Let proof by Lyapunov functions:

Let V.l - R:T ={(8.)}e ['|S>0,1>0and
8-S, >0, -1, > 0, for h(I) =0

8
Let V(S,I) = w, (S-S, m(S—)+

Z

I
w, (I-I,1n (I—) for some w w, >0
2

d d dI

d—‘t’ =w (5-8)) d—i+w2 (1)

dv A

Tl (3-5,) (-Bl-d+§)+wz(I-IZJ(BS-(CHY))
dv

m =w, (5-3, W A-BSI-dS)+w, (I-1, ) (BSI-(d+y)D)

From the equation at equilibrium:

-d = Blz'sia'(d"'Y) = 'Bsz

z

i_‘t’ = WI(S—SZ)(—BI+BIZ+%-§—Z)+WZ (I-I,)(BS-BS,)
- B[wms-sz)az-lm(S;Sf’ﬁwz (1-1,)(8-5,)]

dv 5-8,

=~ B, (8-8,)(T,-D+A( 55, Jrwy (I-1,)(5-8,)]

dv 5, -8

< = BIWL (88, )L, )w, A€ 55 +Bw , (I-1,) (5-8,)
Ccll_: = Blw,-w, (3-3,)(1-1,)-w A (S_Sz)z forw, =w, =1
dv A 880

dt .

Y _oirs= S,

dt

Hence, its global stable. Therefore, the endemic
equilibrium state E. is globally asymptotical stable.

Bifurcation analysis: The main purpose of this study 1s
to get an insight into how the dynamics of the system
changes depending on the system parameter.

If parameter is allowed to vary, the dynamics of the
differential system may change. An equilibrium can

become unstable and a period solution may appear or a
new stable equilibrium may appear making the previous
equilibrium unstable.

The change in the qualitative character of a solution
as a control parameter is varied is known as a bifurcation
and the parameter values at which they occur are called
bifurcation points. The main purpose is to get an msight
into how the dynamics of the system changes depending
on the system parameter.

Note that the endemic equilibrium point 15 only
positive (and in the domain of mterest) if A>d (d+).
Linear stability analysis shows that diseases-free steady
state 1s locally asymptotically stable if \A<d (d+) and an
unstable if ,A>d (d+) while the endemic stead state is
locally asymptotically stable .A>d (d+,) and an unstable
WAd (dR).

Furthermore, at A = d (d+,), so, there is a trans-
critical bifurcation. If we draw the stability region of SIR
Model for the disease free equilibrium and endemic
equilibrium.

If R>1 each individual produces, on average, less
than one new infected mdividual and hence, the disease
dies out. And if R>1, each individual produces more than
one new infected individual and hence, the disease is
able to invade the susceptible population. There is the
threshold condition R, = 1 is equivalent to the threshold
condition describes at ,A = d (d+). So, describes R.=1 a
trans-critical bifurcation as shown Fig. 2.

Where the disease-free equilibrium and endemic
equilibrium point collide and exchange stability. It 1s also
clear that a unique stable endemic equilibrium arises from
the bifurcation pomt R and increases as R imcreases
(» increases by fixing A and d), thus, it shown that
infectious free steady state exists for all R. while an
endemic infection only exist for R>>1. Let us verity that
existence of a Hopf bifurcation in Eq. 3 and determine its
direction:

1 ABA
Set A, =—| 2BA+(2d d+y| 1- {1+
et A; 26{ BA+(2d+y)( Y)[ " @ H

Theorem 3.6: If, H 1s exist. Assume further that:

3
BA-3d*-dy- 2d
¥

§

(23)
r<

Then there is a family of unstable limit cycles if
r is less than and close to A. ie., a subecritical Hopf
bifurcation occurs when r passes through the critical
value A.
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Proof: Tet r = A. Then the tr (1) = 0. It follows from
Eq. 16 that:

tr(7,) =-2d-PI, +BS y=0

-2d-fI, +B(d BI

B2 -(3dR+YB) 1, +2d* -BA+yd = 0
vd+2d?

BL-(3d+y) I, +-A+—"—=0

= LB [-(3d+y)-4-\/(3d-~-\()2 -4(20* -BA+yd) ]

doy 4 11 [TARA
OB o dey 2 2y (d+y)?
d+ 4BA
g, =3 g 1o HPA
2p (dﬂ')

From above trance (J,) = 0. And det (J,)>0

Now by using above information, we get:

A= iin(dﬂ()J(RD-l—H)z -4H,

Nowletm = fdet (I, ) = \/d(dw)./(Rn-l-H)z-le

Then the eigen values of (I) are . .= & i, perform
coordinate transformation by x = S-S, y = [-L then system
Eq. 3 becomes:

o« -(d+PI;)x-B8, y-Pxy (24)

=BLx+pS,-(d+e)y+Bxy

Setting x = -SV, y =.UHd+) V and wsing tr (1) = -2d-

LS~ = 0.0 =det (1) = -d,.3+d+dHdl we can obtain:
e mVHFU, V),
(25)
d—\tf = aU+G(U,V)
Where:
FU.V) = BV(—BS, + BL, + (U +dV+pL V)

m
G (U, V) = -BV(@U+dV+pL,V)

We know that, tr (1) = 0, so, we get GUV) = OF(U.V)
’ d+y

1 1
=—[F -
. 16[ b 16

[FUV (FUU +FVV )-G uv (G uu +GW)_FUUG uu +FWGVV]

+F,

UV

+G

UUV]

37

By some calculations, we obtain:

B’ (-BS, +PI,+d)* (d+BI, )(-3d’-4yd-y* )+
b -2dPIL-2dyLL)
- 8(d+y)?

Note that, ,S+HI+d = -d-,. We have:

_ BHHPIL)(2d* 3yd ey’ 128, 4Bl

8w?

Then the conclusion of this theorem follows from L.
Perko As an example, we fix A =8,d=01,,=1,,= L.
Then, we obtain ( /R, -1yd{d+,) = 6.2338, A-3d-d-2dY, =
7.868 and A, = 5.2023.

We know that there 1s an unstable limit cycle when
15 less than and nearfrom theorem 4.6 which i1s shown that
there is an unstable limit cycle when decrease from 5.2023
which (Fig. 3).

It 1s easy to verify that positive solutions of are
ultimately bounded. Note that the nonnegative S-axis 1s
positively invariant and that the nonnegative T-axis repels
positive solutions of Eq. 1. Since, E is asymptotically
stable 1t follows from the Bendixson theorem that every
positive solution of approaches as t approaches infmnity.
The limit cycles of play crucial roles on the structure of
dynamical behaviors of the model. For example, if there is
no limit cycle and its endemic equilibrium 13 umque, the
unique endemic equilibrium 1s globally stable. For this
reason we adopt Dulac functions to obtain conditions
for the non-existence of a limit cycle in Eq. 1. Let denote
the right-hand sides of Eq. 1 by f and £.

Lemma 3.7: If there is a continuous function D in R such
that D is continuously differentiate when 1.1, and

3(Df) , 3(Df,)
)

<Owhen I =1,
a3

Then system is does not have a limit cycle.

Proof: Without loss of generality we suppose that Q 1s a
limit cycle of Eq. 1 across the line I =1 with a period T. We
denote its part below I =1L by Q and its part above I = L by
Q. (Fig. 4). Then we consider auxiliary lines T=1-,T =T+
denoted by L., L, respectively where >0 1s sufficiently
small. Let G. denote the region enclosed by Q. and L. and
let G. denote the region enclosed by Q. and L. If . and .. be
the bound a G. and G, respectively with the directions
indicated m Fig. 4 then Green’s theorem wnplies that:
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3(Df))  a(Df,) ]
G{ I [T+—al } dsdl §,. mD(ﬁdI f,ds),

(26)
[f {B(Dfl) +3(Df2)} dsdl = [f|Dif,dI-f,ds)
3, o3 ol b
If G.G1, we have:
8= J-J[B(Dfl)+a(Df2)} dsdl=0 (27)
5, 23 dl
Tt follows from Eq. 25 that:
8> [[| DCf, d1-f,ds) [ D(f, di-,ds) (28)

i Tz

Taking .0 in Eq. 26, we obtain:

T
0>8>[| D(f,dI-f,ds) = [ DL, £,f; ds) =0
Q 0

This implies non-existence of the limit cycle Q. Now,
we apply lemma 4.7 to obtain sufficient conditions for the
nonexistence of a limit cycle in Eq. 1.

Theorem 3.8: System does not have a hmit cycle if
r<d.

Proof: We know - is a positive invariant set, so, we have
S<A/d. Take a dulac function D = 1/SI. Then, we have:

ADf) ADEY A

03 ol S St
1
=S (-AT+Sr), from (1) for [0
We have:
1 TA
= A+
SZIZ ( d )

< %(r-dko, since, r<-d

Hence, system Eq. 1 does not have a limit cycle.

Theorem 4.8: Tmplies that there is no limit cycle in system
Eq. 1, if r=id 1s to say if the treatment for mfective 1s less
than the death rate, there will no limit cycle. We now
present a different condition for non-existence of the limit
cycle of Eq. 1 is independent of the treatment.

Since, E 1s unstable and there 1s no limit cycle, any
orbit except the two endemic equilibria and the stable
manifolds of E meets the positive S-axis in finite time, i.e.,

38

the
assumption (1) of theorem 4.2.2 holds, since, there 1s no
limit cyele in Eq. 1 and E. 1s stable, there 1s a region D
whose boundary includes the two stable manifolds of E
such that any positive orbit inside D tends to E. as t tends

disease becomes extinct in finite time. If the

to nfinity and any positive orbit outside D intersects the
positive S-axis in finite time.

CONCLUSION

A Hopf bifurcation occurs when a periodic solution
or limit cycle, surrounding an equilibrium point, arises or
goes away as a parameter varies. When a stable limit cycle
surrounds an unstable equilibrium point, the bifircation
1s called a supercnitical Hopf bifurcation. If the limit cycle
is unstable and swrounds a stable equilibrium point then
the bifurcation is called a subcritical Hopf bifurcation.
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