Journal of Modern Mathematics and Statistics 13 (1): 21-27, 2019

ISSN: 1994-5388

© Medwell Journals, 2019

New Types of Openness and Closed Graphs in Topological Space

Ali Khalaf Hussain Al-Hachami Department of Mathematics, College of Education, Wassit University, Kut, Iraq

Abstract: \propto -unequivocally θ -continuity function and (\propto, θ) -closed graphs was examined by Chae *et al*. The goal of this study is to research a few of new portrayal and properties of \propto -unequivocally θ -continuity and (\propto, θ) -closed graphs. Besides we characterize new sort of a function called \propto, θ -open function which is more grounded than quasi \propto -open and \propto -open and we acquire a few portrayals and properties for it.

Key words: Characterize, properties, portrayals, function, θ -continuity, ground

INTRODUCTION

The concept of ∞ -open sets was introduced and investigated by Njastad (1965). Latterly, the concept of ∞ -unequivocally θ -continuity function has studied by Chae *et al.* (1995). We know from Chae *et al.* (1995) that the type of ∞ -unequivocally θ -continuity function is stronger than a unequivocally θ -continuity function (Noiri, 1980) and a unequivocally ∞ -continuous function (Faro, 1987).

In this study we aim to investigate further properties and characterizations of ∞ -unequivocally θ -continuity functions as well as θ -closed graph (Chae *et al.*, 1995) and new types of function define called ∞ , θ -open functions which is stronger than quasi ∞ -open and hence, unequivocally ∞ -open, some characterizations and properties are obtain for it.

Preliminaries: All through this study just X speaks to a topological space.

Definition 2.1: Let be an subset of a topological space (X, τ) then is called:

- Regular open if $A = (\bar{A})^{\circ}$ (Njastad, 1965)
- \propto -pen if $A \subseteq (\overline{A^{\circ}})^{\circ}$ (Levine, 1963)
- Semi-open if A ⊆ A ∘ (Levine, 1963)
- θ-open if for each x∈A, there exist an open set U in X such that x∈ U ⊂ Ū ⊂ A (Velicko, 1968)
- θ-semi-open if for each x∈A, there exist an semi-open set U in X such that x∈ U ⊂ U ⊂ A (Noiri and Kang, 1984)

The supplements of the sets said above are their individual closed sets.

Definition 2.2: The set $\propto \bar{A} = \{p \in X: A \cap H \neq \emptyset \text{ for each } \text{α-open set H containing p}\}.$

Definition 2.3: "A filter base Ψ is said to be θ -convergent (Velicko, 1968) (resp. ∞ -convergent to a point $x \in X$ if for each open (resp. ∞ -open) set G containing x, there exist an $F \in \Psi$ such that $F \subset \overline{F}$ (resp.". $F \subset G$).

Definition 2.4; (Maheshwari *et al.*, **1982):** "A subset A of a topological space (X, τ) is called a feebly open set in X if there exist an open set U such that $U \subset A \subset sCl(U)$ where is the semi-closure operator".

Remark 2.5; (Jankovic, 1985): A subset A of a topological space (X, τ) is called \propto -open if and only if it is feebly open. It is notable that for a space (X, τ) , X can be retopologized by the family τ^{α} of all \propto -open sets of X (Maheshwari *et al.*, 1982; Thakur, 1980) and furthermore the family τ^{θ} of all θ -open set of X (Velicko, 1968) that is τ^{θ} (called θ -topology) and τ^{α} (called an α -topology) are topologies on X and it is clearly that $\tau^{\theta} \subset \tau \subset \tau^{\alpha}$. The family of all \propto -open (resp. θ -open and feebly-open) arrangements of X is indicated by $\propto 0(X)$ (resp. $\theta 0(X)$ and τ^{α}).

Definition 2.5; (Noiri and Kang, 1984): A function $f: X \neg Y$ is said to be unequivocally θ -continuous if for each $x \in X$ and each open set H of Y containing f(x), there exist an open set G of X containing X such that $f(\bar{G}) \subset H$.

Definition 2.6; (Noiri and Kang, 1984): A function $f: X \rightarrow Y$ is said to be unequivocally θ —continuous if for each open set H of Y, $f^1(H)$ is θ -open X in if and only if each closed set F of Y $f^1(F)$, is θ -closed in X.

Definition 2.7; (Maheshwari *et al.*, **1983):** A function $f: X \rightarrow Y$ is said to be unequivocally ∞ -continuous (resp. faintly continuous (Long and Herrington, 1982), completely ∞ - irresolute and unequivocally ∞ -irresolute (Faro, 1987) if for each open (resp. θ -open, ∞ -open and ∞ -open) set H of Y, f^1 (H) is ∞ -open (resp. open, regular open and open) in X.

Definition 2.8; (Noiri, 1973): A function f: X→Y is said to be semi-open (resp. ∝-open (Maheshwari *et al.*, 1983), quasi ∝-open (Thivagar, 1991; Abdul Jabbar, 2000), θs-open (Abdul-Jabbar, 2000) weakly θs-open and s**-open (Ali, 2003) function if the image of each open, (resp. open ∝-open, open, θ-open and semi-open) set of G of X, f (G) is semi-open (resp. ∝-open, open, θ-semi-open, θ-semi-open, open, θ-semi-open and open) in Y.

Definition 2.9; (Lee *et al.*, **1985):** A function $f: X \rightarrow Y$ is said to be pre-feebly-open (resp. unequivocally ∞ -open (Thivagar, 1991), ∞ **-open (Ali, 2003) function if the image of each ∞ -open set of G of X, f(G) is ∞ -open in Y.

Definition 2.10; (Baker, 1986): Let A be an subset of a topological space (X, τ) then A is called θ -neighborhood of a point x in X if there exist an open set U such that $x \in U \subset \overline{U} \subset A$.

Definition 2.11; (Lee *et al.*, **1985):** "A function $f: X \rightarrow Y$ is said to be" θ -open function if for each $x \in X$ and each θ -neighborhood A of X, F (A) is -neighborhood f(x).

Definition 2.12; (Singal and Arya, 1969): A space X is said to be practically regular if for each regular closed set of X and each point $x \neq R$, there exist disjoint open set U and V such that $R \subset U$ and $x \in V$.

Definition 2.13; (Faro, 1987): A space X is said to be \propto -hausdorff if for any x, y \in X, x \neq y, there exist \propto -open set G and H such that x \in G, y \in H and G \cap H = φ .

Definition 2.14: "A space X is said to be θ-compact (resp. ∞ -compact (Jankovic *et al.*, 1988) if and only if every cover of X by θ-open (resp. ∞ -open) sets has a finite subcover".

Definition 2.15; (Porter and Thomas, 1969): "A subset A of a topological space (X, τ) is said to be quasi H-closed relative to X if $\{E_i: i \in I\}$ each cover of A by open sets of X, there exist a finite subset I_0 of I such that $A \subset \bigcup \{\overline{E_i}: i \in I_0\}$ ".

Definition 2.16; (Porter and Thomas, 1969): "A space X is said to be quasi H-closed if X is quasi H-closed relative to X".

Definition 2.17; (Noiri, 1975): A function f: $X \rightarrow Y$ is said to be θ-closed (resp. s**-closed (Long and Herring, 1977), semi-closed (Dube *et al.*, 1998), θs-closed (Abdul-Jabbar, 2000), almost unequivocally θs-closed and unequivocally θs-closed graph if and only if for $x \in X$ each and each $y \in Y$

such that $y \neq f(x)$, there exist an open (resp. semi-open, semi-open, semi-open, semi-open and semi-open) U containing x in X and an open (resp. open, semi-open, open, open and open) set V containing f(x) in Y such that $(\overline{v} \times \overline{v}) \cap G(f) = \phi$ {resp. $(U \times V) \cap G(f) = \phi$, $(U \times V) \cap G(f) = \phi$ } $(\overline{v} \times \overline{v}) \cap G(f) = \phi$ } $(\overline{v} \times \overline{v}) \cap G(f) = \phi$ }.

MATERIALS AND METHODS

∝-Unequivocally θ-coherence

Definition 3.1: By Chae *et al.* (1995) "A function $f: X \rightarrow Y$ is said to be ∞ -unequivocally θ-coherence if for each $x \in X$ and each ∞ -open set H of Y containing f(x), there exist an open set U of X containing x with the end goal that $f(\overline{U}) \subset H$ ".

Theorem 3.1: For a function $f: (X, \tau) \rightarrow (Y, \gamma)$ the accompanying proclamations are proportionality:

- f is ∝-unequivocally θ-coherence
- $f: (X, \tau^{\theta} \rightarrow (Y, \gamma))$ is unequivocally \propto -irresolute

Theorem 3.2: In the event that a function $f\colon X \neg Y \propto$ unequivocally θ -coherence at that point for each $x \in X$ and each \propto -open set H of Y containing f(x), there exist θ -open set N of X containing x with the end goal that $f(N) \subset H$. The evidence of the above theorems are not hard and along these lines, they are precluded.

Theorem 3.3: For a function $f: (X, \tau) \rightarrow (Y, \gamma)$ the accompanying articulations are proportionality:

- f is ∞-unequivocally θ-coherence
- For each point x∈X and each fiter base Ψ in X θ-converging to x, the fiterbase f (Ψ) converges to f (x) in (Y, αO(Y))
- For each point x∈X and each net {x_λ}_{λ∈∇} in X
 θ-converging to x, the net {f(x_λ)}_{λ∈∇} converges to f(x) in (Y, α0(Y))
- For each point $x \in X$ and each fiterbase Ψ in X θ -converging to x, the fiterbase $f(\Psi)$ α -converges to f(x) in (Y, γ)
- For each point $x \in X$ and each net $\{x_{\lambda}\}_{\lambda \in V}$ in X θ -converging to x, the net $\{f(x_{\lambda})\}_{\lambda \in V}$ α -converges to f(x) in (Y, γ)

Proof: (i) \rightarrow (ii) \rightarrow (iii) and (i) \rightarrow (iv) \rightarrow (v) follows, immediately from Definition 3.1 and Theorem 2 of (Chae *et al.*, 1995).

Lemma 3.1; (Andrijevic, 1984): Let X be a topological space and $A\subseteq X$. At that point the accompanying are hold:

- $\alpha \text{Cl}(E) = E \cup \text{Cl}(\text{Int}(\text{Cl}(E)))$
- $\alpha \operatorname{Int}(E) = E \cup \operatorname{Int}(\operatorname{Cl}(\operatorname{Int}(E)))$

Theorem 3.4: For a function $f: X \rightarrow Y$ the accompanying articulations are comparability:

- f is ∝-unequivocally θ-coherence
- f(Cl_θ(A))⊂(Cl (Int (Cl (f (A))), for every subset an of X
- Cl_θ(f¹(E))⊂f¹(Cl(Int(Cl(f(E)))), for every subset an of E of Y
- f¹(Cl(Int(Cl(f(E))))⊂Int_θ(f¹(E)), for every subset an of E of Y

Proof: This follows from Lemma 3.1 and Theorem 2 of (Chae *et al.*, 1995).

Theorem 3.5: If a function $f: X \rightarrow Y$ is ∞ -unequivocally θ -coherence and if E is an open subset of X, then $f|E:E\rightarrow$ is ∞ -unequivocally θ -coherence in the subspace E.

Proof: Let H be any \propto -open subset of Y. Since, f is \propto -unequivocally θ -coherence. Therefore, by [7, theorem 2], $f^1(H)\in \theta 0(X)$, so by Lemma 1.2.9 of (Abdul-Jabbar, 2000) $(f|E)^1(H) = f^1(H)\cap E\theta 0(E)$. This implies that $f|E:E\rightarrow Y$ is \propto -unequivocally θ -coherence.

Theorem 3.6: For any two functions, f: $X \rightarrow Y$ and g: $Y \rightarrow Z$, the accompanying are valid:

- f is α-unequivocally θ-coherence and g is αcontinuous, then gof is unequivocally θ-coherence
- f is faintly continuous and g is α-unequivocally θcoherence, then gof is unequivocally α-irresolute

Theorem 3.7: "Let f: $X \rightarrow Y$ be faintly continuous and θ -open function and g: $Y \rightarrow Z$ be a function. Then $g \circ f$: $X \rightarrow Z$ \propto -unequivocally θ -continuous if and only if g is \propto -unequivocally θ -coherence".

Proof: Let $g \circ f \sim \text{-unequivocally } \theta\text{-coherence}$ and $H \in \Omega(Z)$. Then $(g \circ f)^{-1}(H) = f^{-1}(g^{-1}(H)) \in \theta 0(X)$. Since, f is θ -open function, $f(f^{-1}(g^{-1}(H))) \in \theta 0(Y)$. Hence, $g^{-1}(H) \in \theta 0(Y)$. Thus, g is ∞ -unequivocally θ -coherence. It is easy to prove the opposite and is thus omitted.

Theorem 3.8: If g: $Y \rightarrow Z$ be a one to one ∞ -open function on Yonto Z and $g \circ f$: $X \rightarrow Z$ is ∞ -unequivocally θ -continuous. Then f is unequivocally θ -coherence.

Proof: Suppose g is ∞ -open function. Let H be an open subset of Y, since, g is one to one and onto, then the set g(H) is an ∞ -open subset of Z, since, $g \circ f$ is ∞ -unequivocally θ -coherence, it follows that $(g \circ f)^{-1}(g(H)) = f^{-1}(g^{-1}(g(H))) = f^{-1}(H)$ is θ -open in X. Thus, f is unequivocally θ -continuous.

Theorem 3.9: If X is almost regular and f: $X \rightarrow Y$ is completely ∞ -irresolute function f is ∞ -unequivocally θ -coherence.

Proof: Let H be an ∞ -open subset of Y, since, f is completely ∞ -irresolute function, then $f^1(H)$ is regular open in X and from the fact that a space X is almost regular if and only if fore each $x \in X$ and each regular open set $f^1(H)$ containing x, there exist a regular open set 0 such that $x \in 0 \subset \bar{O} \subset f^1(H)$ [31, theorem 2.2]. Therefore is θ -open in X and by [7, theorem 2], f is ∞ -unequivocally θ -continuous.

Lemma 3.2; (Chae *et al.*, 1986): Let $\{X_{\lambda}: \lambda \in \Delta\}$ be a family of spaces and $U_{\lambda i}$ be subset of $X_{\lambda i}$ for each I=1, 2, ..., n. Then $U=\Pi_{i=1}^n U_{\lambda i} \times \Pi_{\lambda \neq \lambda i} X$ is ∞ -open in $\prod_{\lambda \in \Delta} X_{\lambda}$ if and only if $U_{\lambda i} \in \alpha O(X_{\lambda i})$ for each i=1, 2, ..., n.

Theorem 3.10: Let g_{λ} : $X_{\lambda} \rightarrow Y_{\lambda}$ be a function for each $\lambda \in \Delta$ and g: $\prod X_{\lambda} \rightarrow \prod Y_{\lambda}$ a function defined by $g(\{x_{\lambda}\}) = \{g_{\lambda}(x_{\lambda})\}$ for eac $\{x_{\lambda}\} \in \prod X_{\lambda}$. If g is ∞ -unequivocally θ -coherence, then g_{λ} is ∞ -unequivocally θ -coherence for each $\lambda \in \Delta$.

Proof: "Let $\beta \in \Delta$ and $V_{\beta} \in \alpha O(Y_{\beta})$. Then, by Lemma 3.2, $V = V_{\beta} \times \Pi_{\lambda \star \beta} Y_{\lambda}$ is «-open in ΠY_{λ} and $g^{-1}(V) = g^{-1}{}_{\beta}(V_{\beta}) \times \Pi_{\lambda \star \beta} Y_{\lambda}$ is «-open in ΠX_{λ} . From Lemma 3.2, $g^{-1}{}_{\beta}(V_{\beta}) \in \theta O(X)$." Therefore, g_{β} is «-unequivocally θ -coherence.

Remark 3.1: It was known in [6, example 2.2] that $V \in \infty 0(X \times Y)$ may not, generally, be a union of sets of the form $A \times B$ in the product space $X \times Y$ where $A \in \infty 0(X)$ and $B \in \infty 0(Y)$. Therefore, the converse of theorem 3.10 may not be true, generally.

Theorem 3.11: Let g: $X \rightarrow Y_1 \times Y_2$ be ∞ -unequivocally θ -coherence where X,Y_1 and Y_2 are any topological spaces. Let $f_i: X \rightarrow Y_i$ defined as follows: For $x \in X$, $g(x) = (x_1, x_2)$, $f_i(x) = x_i$ for i = 1, 2. Then $f_i: X \rightarrow Y_i$ is ∞ -unequivocally θ -continuous for i = 1, 2.

Proof: Let x be any point in X and H_1 be any α -open set in Y_1 containing $f_1(x) = x_1$, then by Lemma 3.2, $H_1 \times Y_2$ is α -open $Y_1 \times Y_2$ which contain (x_1, x_2) . Since, g is α -unequivocally θ -continuous, therefore, there sexist an open set U containing x such that $g(Cl(U))H_1 \times Y_2$. Then $f_1(Cl(U)) \times f_2(Cl(U)) = H_1 \times Y_2$. Therefore, $f_1(Cl(U))H_1$. Hence, $f_1 \times G$ unequivocally G-coherence. Similar statement for G is G-unequivocally G-coherence.

Lemma 3.3: Let X_i , X_2 , ..., X_n be n topological spaces and $X = \prod_{i=1}^n X_i$. Let $E_i \in \Theta(X_i)$ for i = 1, 2, ..., n then $\prod_{i=1}^n E_i \in \Theta(\prod_{i=1}^n X_i)$.

Proof: Let $(x_1, x_2, ..., x_n) \in \Pi_{i=1}^n E_i$ then $x_i \in E_i$ for i=1, 2, ..., n. Since, $E_i \in \Theta(X_i)$, for i=1, 2, ..., n. Then there exist open sets U_i for I=1, 2, ..., n such that $x_i \in U_i \subset \overline{U_i} \subset E_i$ for i=1, 2, ..., n. Therefore, $(x_1, x_2, ..., x_n) \in U_1 \times U_2 \times ... \times U_n \subset \overline{U_1} \times \overline{U_2} \times ..., \times \overline{U_n} = C1x_1 \times x_2 \times ... \times x_n (U_1 \times U_2 \times ... \times U_N) \subset \Pi_{i=1}^n E_i$ and $\Pi_{i=1}^n U_i \in \tau(\Pi_{i=1}^n E_i)$ is θ -open set in $\Pi_{i=1}^n X_i$.

Theorem 3.12: Let $X_1, X_2, ..., X_n$ and Z be topological spaces and $\prod_{i=1}^n X_i \to Z$. If given any point p of Let $X_1, X_2, ..., X_n$ be n topological spaces and $\prod_{i=1}^n X_i$ and given any ∞ -open set U in Z containing f(p), there exist θ -open set E_i in X_i for i=1, 2, ..., n such that $p \in \prod_{i=1}^n E_i$ and $f\left(\prod_{i=1}^n E_i\right) \subset U$. Then f is ∞ -unequivocally θ -coherence.

Proof: Let $p \in \Pi_{i=1}^n X_i$ and U be any ∞ -open set in Z containing f(p), there exist θ -open set E_i in X_i for $i=1,2,\ldots,n$ such that $p \in \Pi_{i=1}^n E_i$ and $f\left(\Pi_{i=1}^n E_i\right) \subset U$. Since, $E_i \in \theta \cup (X_i)$ for $i=1,2,\ldots,n$. Therefore, by Lemma $3.3 \prod_{i=1}^n E_i \in \theta \cup (\Pi_{i=1}^n X_i)$ for $i=1,2,\ldots,n$. Thus, f is ∞ -unequivocally θ -coherence.

RESULTS AND DISCUSSION

\alpha\theta-Open function: In this area new kind of function call $\alpha\theta$ -open function study and we discover some portrayal and properties for it.

Definition 4.1: A function f: X-y is call $\alpha\theta$ -open if and only if for each α -open set G in X, $f(G) \in \theta 0(Y)$. On the off chance that takes after quickly that each $\alpha\theta$ -open function is quasi α-open and thus, unequivocally α-open, the opposite is not valid as observed from the accompanying illustration.

Example 4.1: Let $X = \{a, b, c, d\}$ and $\tau = \{x, \emptyset, \{a\}, \{c\}, \{a, b\}, \{a, c\}, \{a, b, c\}, \{a, c, d\}\}$. The identity function i: $(X, \tau) \rightarrow (X, \tau)$ is unequivocally α -open but is not $\alpha\theta$ -open function, since, $\{a\} \in \alpha O(X, \tau)$ but $f(\{a\}) = \{a\} \notin \theta O(X, \tau)$. We discover a few portrayals and properties of $\alpha\theta$ -open function.

Theorem 4.1: For any bijection function $f: Y \rightarrow X$, the accompanying are proportionate:

- The inverse function is ∞ -unequivocally θ -coherence
- f: $Y \rightarrow X$ is $\alpha \theta$ -open function

The following lemmas are used in sequel.

Lemma 4.1; (Abdul-Jabbar, 2000): The accompanying is valid, for each subset E of X:

$$X / Cl_0(E) = Int_0(X / E)$$

Lemma 4.2: The accompanying is valid for every subset E of X:

$$X / Cl_0(E) = \alpha Int_{\Theta}(X / E)$$

Theorem 4.2: For a function $f: Y \rightarrow X$ the accompanying are equal:

- f is $\alpha\theta$ -open function
- $f(\alpha Int(E)) \subset Int_{\theta}(f(E))$, for each subset E of X
- $\alpha Int(f^1(W)) \subset f^1(int_{\theta}(W))$, for each subset W of Y
- f¹(Cl_θ(W))⊂αCl(f¹(W)), for each subset W of Y

Proof: (a)=(b) Suppose f is $\alpha\theta$ -open function and E=X. Since, $\alpha Int=E$, $f(\alpha Int(E))\in\theta 0(Y)$ and $f(\alpha Int(E))=f(E)$ and hence, $f(\alpha Int(E))=Int_{\theta}(f(E))$. Let W=Y. Then $f^1(W)=X$, therefore, we apply (b), we obtain $f(\alpha Int(f^1(W)))=cint_{\theta}(f(f^1(W)))$. Then $\alpha Int(f^1(W))=f^1(int_{\theta}(W))$. (c)=(d): let W=Y, then apply (c) to Y/W, we get $\alpha Int(f^1(W/Y))=f^1(Int_{\theta}(Y/W))$. Then $\alpha Int(X/f^1(W))=f^1(Cl_{\theta}(W))$ which implies that $X/\alpha Cl(f^1(W))=X/f^1(Cl_{\theta}(W))$. Hence $f^1(Cl_{\theta}(W))=\alpha Cl(f^1(W))$. (d)=(a): let G be any α -open set in X. Then Y/f(g)=Y, apply (d), we obtain $f^1(Cl_{\theta}(Y/f(G)))=\alpha Cl(f^1(Y/f(G)))$. Then $f^1(Y/Int_{\theta}(f(G)))=\alpha Cl(X/G)$. Which implies that $X/f^1(Int_{\theta}(f(G)))=X/IntG=X/G$. Therefore, G=f^1(Int_{\theta}(f(G))). Then $f(G)=Int_{\theta}(f(G))$. Therefore, $f(G)\in\theta 0(Y)$. Which completes the proof.

Remark 4.1: Let f: $X \rightarrow Y$ be a bijective function. Then, f is $\propto \theta$ -open function if and only if $f(F) \in \theta C(Y)$, for each \propto -closed set F in X.

Theorem 4.3: If Y is regular space, then each s^{**} -open function is $\alpha\theta$ -open.

Proof: Given G a chance to be any ∞ -open subset of X, then it is semi-open. Since, f is s**-open function. Therefore, f(G) is open in Y. But Y is regular space, then by [1, Lemma 1.2.8] f(G) is θ -open in Y. Which completes the proof.

Theorem 4.4: In the event that $f: X \rightarrow Y$ is θ -open function and $E \subset X$ is an open set in X, at that point the $f|E:E \rightarrow Y$ is $\sim \theta$ -open function.

Proof: Let H be any \propto -open set in the open subspace E. At that point, by [15, Theorem 3.7], H is \propto -open in X. Since, f is \approx 0-open function. In this way, f(H) is θ -open in Y. Hence, f|E is \propto 0-open function.

Fig. 1: Growth of the graph

Theorem 4.5: Given f: $X \neg Y$ be a function and $\{E_{\alpha} : \alpha \in \nabla\}$ be an open cover of X. If the restriction $f[E_{\alpha} : E_{\alpha} \neg Y]$ is $\alpha \theta$ -open function for each $\alpha \in \nabla$, then f is $\alpha \theta$ -open function.

Proof: Give H a chance to be any \propto -open set in X. In this manner, by [15, Theorem 3.4], $H \cap E \propto$ is \propto -open in the subspace $E \propto$ for each $\alpha \in V$. Since, $f \mid E \alpha$ is $\propto \theta$ -open function $(f \mid E \alpha)$ $(H \cap E \propto)$ is θ -open in Y and hence, $f(H) = \cup \{(f \mid E \propto)(H \cap E \propto): \alpha \in V\}$ is θ -open in Y. This demonstrate f is $\propto \theta$ -open function.

Remark 4.1: Unmistakably θ -compact and quasi H-closed equivalent from theorem 2.11 of (Ahmed and Yunis, 2002).

Theorem 4.6: In the event that $f: X \rightarrow Y$ is $\sim \theta$ -open function and f(F) is θ -compact relative to Y, then F is \sim -compact subspace relative to X.

Proof: Let $\{E_\alpha:\alpha\in\nabla\}$ be an open cover of F, then $\{f(E_\alpha):\alpha\in\nabla\}$ is cover for f(F). Since, f is $\alpha\in \Phi$ -open function. Therefore, $f(E_\alpha):\in \Theta(Y)$ for each $\alpha\in \nabla$. Since, f(F) is θ -compact relative to Y. Therefore, there exist a finite subfamily $\{f(E_\alpha):i=1,2,...,n\}$ such that $f(F)\subset Y_{i=1}^nf(E_\alpha)$. Hence, $F\subset Y_{i=1}^nf(E_\alpha)$. Therefore, F is α -compact subspace relative to X.

Corollary 4.1: If $f: X \rightarrow Y$ is $\alpha \theta$ -open surjective and Y is θ -compact space, then X is α -compact space.

Theorem 4.7: A function $f: X \rightarrow Y$ is $\bowtie \theta$ -open if and only if for each subset S of Y and any \bowtie -closed set F in X containing $f^1(S)$, there exist a θ -closed set M in Y containing S such that $f^1(M) \subset F$.

Proof: Assume that f is $\sim \theta$ -open function. Let $S \subset Y$ and F be an \sim -closed set in X containing $f^1(S)$. Put M = Y/f(X/F), then M is θ -closed in Y and since, $f^1(S) \subset F$, we have $S \subset M$. Since, f is $\sim \theta$ -open function and F is \sim -closed in X, M is θ -closed in Y. It follows that $f^1(M) \subset F$.

Conversely, let G be any \propto -open subset of X and put S = Y/f. Then X/G is \approx -closed set containing $f^1(G)$. By hypothesis, there exist a θ -closed set M in Y containing S such that $f^1(M) \subset X/G$. Thus, we have $f(G) \subset Y/M$. On the other hand, we have $f(|G) = Y/S \supset Y/M$ and hence, f(G) = Y/M. Consequently, f(G) is θ -open in is $\propto \theta$ -open function.

Function with (\propto, \theta)-closed graph: In this area, we examine new properties of (\propto , θ)-closed graph (Chae *et al.*, 1995). Definition 5.1 (Chae *et al.*, 1995). Let, $f(G) = \{(x, f(x)) : x \in X\}$ be the graph of $f: X \to Y$, then is said to be (\propto , θ)-closed with respect to $X \times Y$, if for each point $(x,y) \notin G(f)$, there exist an open set U and an \propto -open set H containing x and y, respectively, such that $f(U) \cap H = \varphi$. The accompanying diagram is a growth of the graph 4.1.1 of (Abdul-Jabbar, 2000). None of the suggestions is reversible (Fig. 1).

Example 5.1: Let $X = \{a, b, c\}$ and, $\tau = \{\phi, X, \{a\}, \{a, b\}, \{a, c\}\}$, then the function $f:(X, \tau) \rightarrow (Y, \tau)$ defined as: f(x) = a, for each $x \in X$ has θ -closeed graph which has not (∞, θ) -closed graph.

Theorem 5.1: If $f: X \rightarrow Z$ is a function with $(\alpha \theta)$ -closed graph and $f: X \rightarrow Z$ α -unequivocally θ -coherence functions, then the set $\{(x, y): f(x) = g(y)\}$ is θ -closed in $X \times Y$.

Proof: Let $E = \{(x, y): f(x) = g()y\}$. If $(x, y) \in X \times Y/E$, then $f(x) \neq g(y)$. Hence, $(x, g(y)) \in (X, Z)G(f)$. Since, f has $(\propto \theta)$ -closed graph. Therefore, there exist open set U and \propto -unequivocally θ -coherence of g implies that there is an open set V of X such that $g(\overline{v})_{\subset H}$. Therefore, we have $f(\overline{v}) \times g(\overline{v}) = \varphi$. This established that $f(\overline{v}) \times g(\overline{v}) \cap E = \varphi$ which implies that $(x, y) \notin Cl_{\theta}E$. E is θ -closed in $X \times Y$.

Corollary 5.1: If is an Hausdorff space and f, g: $X \rightarrow Y$ are is \sim -unequivocally θ -coherence functions, then the set $\{(x, y): f(x) = g(y)\}$ is θ -closed in $X \times Y$.

Theorem 5.2: If $f: X \rightarrow Y$ is any function with θ -closed point inverses such that the image of each closure of open set is ∞ -closed, then has $(\infty \theta)$ -closed graph.

Proof: Let $(x, y) \in X \times YG(f)$. Then $x \notin f^1(y)$ and since, $f^1(y)$ is θ -closed, there exist an open set U containing x such that $\overline{U} \cap f^1(y) = \varphi$. It follows that $f(\overline{U})$ is ∞ -closed. Therefore, there is an ∞ -open set H in Y containing y such that $f(\overline{U}) \cap H = \varphi$. Thus, f has $(\infty \theta)$ -closed graph.

Theorem 5.3: Let $f: X \neg Y$ be given function with $(\neg \theta)$ -closed graph, then for each $x \in X$, $\{f(x) = \cap \{\neg Cl(f(\overline{U})): U \text{ is an open set of } x\}$ has.

Proof: Let the graph of the function be $(\alpha\theta)$ -closed. Then it is claimed that for each $x \in X$, $\{f(x) = \bigcap \{\alpha \subset I(f(\overline{U})): U \text{ is an open set of } x\}$.

For if not, so, let $y \neq f(x)$ such that $y \in \cap$, $\{ \ll Cl(f(\overline{\upsilon})) : U$ is an open set of $x \}$. Which implies that $y \in \ll Cl(f(\overline{\upsilon}))$ for each open set of x; it means that, for each \ll -open set V of y in $Y, V \cap f(\overline{\upsilon}) \neq \varphi$. Thus, we obtain that $(x, y) \notin G(f)$ and there exist U and V such that $V \cap f(\overline{\upsilon}) \neq \varphi$ which implies that is contradiction. Thus, y = f(x).

Theorem 5.4: Let $f: X \rightarrow Y$ be a function with $(\propto \theta)$ -closed graph. If is quasi H-closed in X, then f(E) is has \propto -closed in Y.

Proof: Let E be a quasi H-closed in X. Suppose that f(E) is not ∞ -closed in Y. Let $y \notin f(E)$. Therefore, $y \neq f(x)$ for each $x \in E$. Since, f has $(\infty \theta)$ -closed graph. Therefore, there exist open set U_x and ∞ -open set H_x containing x and y, respectively such that $f(\overline{U_x}) \cap H_x = \varphi$, for each $x \in E$. The family $Q = \{U_x : x \in E\}$ is an open cover of E. Since, E is quasi H-closed, there exist a finite subfamily $\{U_{x(1)}, ..., U_{x(n)}\}$ of Q such that $E \subset Y_{i=1}^n(\overline{U_{x(n)}})$. Put $H = I_{i=1}^n H_{x(n)}$. Then:

$$f(E) \cap H \subset Y_{i=1}^n f\Big(\overline{U_{x(i)}}\Big) \cap H \subset Y_{i=1}^n f\Big(\overline{U_{x(i)}}\Big) \cap \Big(I_{i=1}^n H_{x(i)}\Big) = \phi$$

Since, H is an \propto -open set containing y, $y \notin \propto Cl(f(E))$. Therefore, $\propto Cl(f(E)) \subset f(E)$.

Corollary 5.2: The image of any quasi H-closed space in any space is ∞ -closed under functions with $(\infty \theta)$ -closed graphs.

Theorem 5.4: Let $f: X \neg Y$ be a given function. Then is G(f) is $(\neg \theta)$ -closed graph if and only if for each filter base Ψ in X θ -converges to some p in X, $f(\Psi)$ -converges to some q in Y, f(p) = q.

Proof: Suppose that Then G(f) is $(\infty \theta)$ -closed graph and let $\Psi = \{E_\alpha : \alpha \in V\}$ be a filter based in X such that $\Psi \theta$ -converges to p and $f(\Psi)^{\infty}$ -converges to q. If $f(p) \neq q$, then $(q, p) \notin G(f)$. Thus, there exist open set $U \subset X$ and ∞ -open set $V \subset Y$ containing p and q, respectively, such that $(\overline{U} \times V) \cap G(f) = \varphi$. Since, Ψ^{∞} -converges to p and $f(\Psi)^{\infty}$ -converges to q, there exist an $E_\alpha \in \Psi$ such that $E_\alpha \subset \overline{U}$ and $f(E_\alpha) \subset V$. Consequently, $(\overline{U} \times V) \cap G(f) \neq \varphi$ which is a contradiction.

Conversely, assume G(f) that is not $(\alpha \theta)$ -closed graph. Then, there exist a point $(p, q) \notin G(f)$ such that for each open set $U \subset X$ and α -open set $V \subset Y$ containing p and q, respectively, such that $(\overline{U} \times V) \cap G(f) \neq \varphi$. Define:

$$\begin{split} &\Psi_1 = \! \left\{ \overline{U_\alpha} : U_\alpha \text{ is an open set containing p and } \alpha \! \in \nabla_1 \right\} \\ &\Psi_2 = \! \left\{ V_\beta : V_\beta \text{ is an } \alpha \text{-open set containing q and } \beta \! \in \! \nabla_2 \right\} \\ &\Psi_3 = \! \left\{ E(\alpha,\beta) \colon \! E(\alpha,\beta) \! = \! \left(\overline{U_\alpha} \! \times \! V_\beta \right) \! \cap \! G(f), (\alpha,\beta) \! \in \! \nabla_1 \! \times \! \nabla_2 \right\} \end{split}$$

$$\begin{split} \Psi &= \{ \Psi^*(\alpha,\beta) : (\alpha,\beta) \in \nabla_1 \times \nabla_2 \} \text{ where } \Psi^*(\alpha,\beta) = \{ x \in U_x : (x,f(x)) \in E(\Psi^*(\alpha,\beta) \}. \text{ Then } \Psi \text{ is a filter base in } X \text{ with property that } \Psi \text{ \sim-converges to p and } f(\Psi) \text{ \sim-converges to p and } f(p) \neq q. \end{split}$$

Corollary 5.3: A function $f: X \rightarrow Y$ be has $(\sim \theta)$ -closed graph if and only if for each net X_{γ} in X such that $X_{\gamma} \rightarrow \theta p \in X$ and $f(x_{\gamma}) \rightarrow \alpha q \in Y$, f(p) = q.

CONCLUSION

This study briefly described the θ -open function, Quasi θ -open and θ -open their properties in this research.

REFERENCES

Abdul-Jabbar, A.M., 2000. Continuity, openness and closed graph in topological spaces. MSc Thesis, College of Science, Salahaldin-Erbil University, Erbil, Iraqi Kurdistan.

Ahmed, N.K. and S.H. Yunis, 2002. Some equivalent concepts in topological spaces. Zanco., 14: 25-28.

Ali, K.H., 2003. On semi-separation axioms. MSc Thesis, College of Education, Al-Mustansraih University, Baghdad, Iraq.

Andrijevic, D., 1984. Some properties of the topology of a-sets. Mat. Vesnik, 36: 1-10.

Baker, C.W., 1986. Characterizations of some near-continuous functions and near-open functions. Intl. J. Math. Math. Sci., 9: 715-720.

Chae, G.I., E. Hatir and S. Yuksel, 1995. a-Strongly θ-continuous functions. J. Nat. Sci., 5: 59-66.

- Chae, G.I., T. Noiri and D.W. Lee, 1986. On NA-continuous functions. Kyungpook Math. J., 26: 73-79.
- Dube, K.K., L.J. Yoon and O.S. Panwar, 1998. A note of semi-closed graph. ULT. Rep., 2: 379-383.
- Faro, G.L., 1987. On strongly a-irresolute mappings. Indian J. Pure Appl. Math., 18: 146-151.
- Jankovic, D., 1985. On semi separation properties. Indian J. Pure Apll. Math., 16: 957-964.
- Jankovic, D.S., I.L. Reilly and M.K. Vamanamurthy, 1988.
 On strongly compact topological spaces. Quest. Ans.
 Gen. Topol., 6: 29-40.
- Lee, H.W., G.I. Chae and D.W. Lee, 1985. Feebly irresolute functions. Sungshin Women's Univ. Rep., 21: 273-280.
- Levine, N., 1963. Semi-open sets and semi-continuity in topological spaces. Amer. Math. Monthly, 70: 36-41
- Long, P.E. and L. Herrington, 1982. The T?-topology and faintly continuous functions. Kyungpook Math. J., 22: 7-14.
- Long, P.E. and L.L. Herring, 1977. Functions with unequivocally graphs. Bool. Univ. Mat. Ital., 12: 381-384.
- Maheshwari, S.N., G.I. Chae and P.C. Jain, 1982. Almost feebly continuous functions. UIT. Rep., 13: 195-197.

- Maheshwari, S.N., I.A. Hasanein and S.N. El-Deeb, 1983. a-Continuous and θ-open mappings. Acta Math. Hung., 41: 213-218.
- Njastad, O., 1965. On some classes of nearly open sets. Pac. J. Math., 15: 961-970.
- Noiri, T. and S.M. Kang, 1984. On almost strongly ?-continuous functions. Indian J. Pure Appl. Math., 15: 1-8
- Noiri, T., 1973. Remarks on semi-open mappings. Bull. Calcutta Math. Soc., 65: 197-201.
- Noiri, T., 1975. Properties of theta-continuous functions. Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Nat., 58: 887-891.
- Noiri, T., 1980. On d-continuous functions. J. Korean Math. Soc., 16: 161-166.
- Porter, J. and J. Thomas, 1969. On H-closed and minimal hausdorff spaces. Trans. Am. Math. Soc., 138: 159-170.
- Singal, M.K. and S.P. Arya, 1969. On almost-regular spaces. Glasnik Mat., 4: 89-99.
- Thakur, S.M.S., 1980. On alpha-irresolute functions. Tamkang J. Math., 11: 209-214.
- Thivagar, M.L., 1991. Generalization of pairwise a-continuous functions. Pure Appl. Math. Sci., 33: 55-63.
- Velicko, N.V., 1968. H-closed topological spaces. Amer. Math. Soc. Transl., 78: 103-118.