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Abstract: Getting correct answers to sensitive questions from respondents and estimating the population

parameters on variables that are sensitive in nature 1s still a problem n survey sampling. This study proposes
a new sampling design to estimate the population mean of sensitive variable. It compares analytically and

numerically the variance of the proposed estimator to some existing estimators and establish its greater

efficiency. The process was extended to Searl’s method of estimation, estimation method which utilizes priori

mformation and estimation process using auxiliary information. Comparisons of their variances/mean square
errors give valid results that agree with established facts in the literature
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INTRODUCTION

The challenge of getting truthful or correct answers
to sensitive questions from respondents m most surveys
has remained with researchers over the years. This is
because humans naturally tend to hide, distort, vague,
underreport or even refuse to respond to questions
bearing sensitive or stigmatizing characteristics like tax
evasion, cheating, buying of stolen properties and such
other attitudes that potentially violate social norms. The
reason for the unfortunate choice of such answers stems
from the fact that these violations are often formally or
mnformally sanctioned. In most cases, respondents tend to
systematically under report norm violation and over report
norm-conforming  activities.  These
mtroduce considerable bias to the estimation of the
unknown population parameters and lower the overall
data quality of swvey studies. The main challenge,
therefore, 15 how to get truthful answers to questions
bearing sensitive or stigmatizing characteristics from
respondents.

In an attempt to contend with this situation, survey
designers have over years developed various data
collection strategies in a bid to elicit more honest answers
from respondents. Warner (1965) introduced the
Randomized Response Technique (RRT) with the main
aim of estimating the true proportion of sensitive
characteristics in the population while protecting the
privacy of respondents. This technique was found to
reduce the evasive answering bias

situationscan

and increases

response rate. Horvitz et ol (1967), Kuk (1990),
Kim and Warde (2004), Gjestvang and Singh (2006) and
many other research suggested different modifications
and conducted theoretical investigations tothe properties
of the (Warner, 1965) RRT. Although, RRT has received
a considerable wide aftention in many research areas
like physical and social sciences because of 1its
advantages, there are several difficulties and liunitations
associated with RRTs. Surveys conducted through RRT
require much time and cost to complete. Gewts (1980)
considered the financial limitation of the RRT and also
reported that larger sample sizes are needed to construct
the confidence interval as compared to the direct
questioning method. Hubbard ef al. (1989) pointed out
that making a decision on the choice of the randomization
device best for obtaiming information on sensitive or
stigmatizing characteristic also posed a major challenge.
Chaudhuri and Christofides (2007) criticized that RRT is
confined with respondent’s skill to understand and
handle the device as an ingenious respondent may
understand that his/her response can be traced back to
his/her real status provided he/she understands the
mathematical logic behind the randomization device.
These limitations and difficulties made researchers to
introduce alternatives techniques in the literature. These
alternative techniques include the Unmatched Count
Technique (UCT) (Smith et al., 1974), the nommative
techmque (Miller, 1985), the Three Card method
(Droitcour et al., 2001), Ttem Count Technique (ICT)
(Holbrook and Krosnick, 2009), Ttem Sum Technique (IST)
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(Trappmann et al., 2013), one sample version item sum
technique (Hussain et al, 2015) among others. This
resarech proposes an altemative sampling strategy for
estimating the population mean of variables with sensitive
nature.

Item Sum Technique (IST) (Trappmann et al., 2013):
Trappmann et al. (2013) proposed a quantified version of
Item Count Teclmique (ICT) and named it item sum
technique. Here the swrvey respondents are randomly
divided mto two subsamples. Each member of the
first subsample is presented with a list containing g+1
items with g of those items related to non-sensitive
characteristics (T,) and one related to Sensitive
characteristic (S) while each of the participants in
the second subsample is presented with all the g
non-sensitive items. All sensitive and non-sensitive items
are quantitative in nature. Respondents in both
subsamples are then asked to report the total score
applicable to them without reporting the individual scores
on each of the items. An unbiased estimator of population
mean of sensitive item, say p, from the IST data can be
estimated by the mean difference between the two
subsample sand is given by:

ﬁsl =% Y, (1

where, ¥, and ¥, are the sample means of the first and
second sub-samples, respectively. The variance of f. with
variance:

2
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nl n1n2
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If sampling is done with and without replacement,
respectively.

Item sum technique (Hussain et al., 2015): Hussain ef al.
(2015) proposed an IST without two subsamples.
Suppose p, 15 the population mean of the sensitive
variable of interest. L, is estimated by the method as
follows: A simple random sample of size n 1s selected
from the population. Each of the participants in the sample
15 provided with a hst of g items. The ith item i1s an
addition of queries about a stigmatizing Sensitive (S) and
non-stigmatizing (1)) variables. The respondents are
directed to report only the total score of all items. Both the
non-stigmatizing and the stigmatizing (sensitive) variables
are quantitative in nature.

Tt is assumed that all (T,) and (S) variables
are umrelated to each other and the distribution of
non-sensitive (T,) variables are known to the interviewer.
They proposed an unbiased estimator of the form:

g
Y'Zp‘ﬁ (4)
i, = —=
g
Where:
py = The population mean of the ith non-sensitive
variable
I = 1,2,...8
¥ = The sample mean of reported response

The variance of the estimator is given by:

g
2
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And when sample is drawn without replacement, the
variance of f, 1s given by:

g
Var((i,,) = Lf{gzof + ZGEJ (6)
Hg i=1
Where:
o = The population variance of sensitive variable
o; = The population variance of non sensitive variables
f = N
MATERIALS AND METHODS

The proposed sampling strategy: After considering the
models proposed by Trappmann et ol (2013) and
Hussain et al. (2015), we propose a new sampling design
and an improved estimator obtained from a linear
combination of the two existing estimators. The procedure
is as described as.

Suppose, we have U = {U,, 1, ..., Uy} to be a finite
human population of size N. Let a random sample of size
n be drawn from the population with or without
replacement. Initially, each respondent in the sample is
served with a list containing g items. The jth item consist
of questions about one Sensitive (3) variable and a non
sensitive (T;) variable. Both the sensitive and non
sensitive variables are quantitative in nature and the
respondents are directed to report cnly the total score of
all items. Both the sensitive and non sensitive variables
are unrelated to each other and the distribution of the non
sensitive variables is assumed known to the interviewer.
For mnstance, the respondents n the sample may be asked
questions like:
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+  Last digit of your cell phone number+nmumber of times
you smoked shisha last month

¢+ Date on your birth day wastnumber of times you
smoked shisha last month

* Last digit of your CNIC (Computerized National
Tdentity Card) numbert+number of times you smoked
shisha last month

*  Number of hours you watched TV last day+Number
of times you smoked shisha last month

After this, the sample 13 then randomly divided mto
two subsamples of sizes n, and n,. Members of the first
subsample are served with a list containing g+1 items with
of those items related to non sensitive T, attributes and
one Sensitive (S) attribute while members of the second
subsample are served with a list containing the g non
sensitive (T,) variables only. All sensitive and non
sensitive items are uantitative in nature and the
respondents in the two subsamples are asked to report
only the total score applicable to them without reporting
each individual scores. Using the case of harmful type of
tobacco (shisha) for instance, respondents in the first
subsample may be asked the following questions:

¢ Last digit of your cell phone number is?

* Date on your birth day was?

¢ Last digit of your CNIC (Computerized National
Tdentity Card) number is?

*  Number of hours you watched TV last day?

¢ Number of times you smoked shisha last month?

While the respondents in the second subsample are

asked every other question except the last one. The
proposed estimators is given by:

ysp = alﬁ‘ﬂ +0!2ﬁ52 (M

Or more generally as:

ysp =0, (yl_y2)+(x'2 = (&)
g
Where:
g+, = 1,9,
¥, = AsdefinedinEq 1¥
My = As defined in Eq. 4
1 =1,2,..,¢g

The preposed estimator, ¥, 1s an unbiased estimator
of the population mean of sensitive variable p, with
optimum variance given as:
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When sample is drawn without replacement, the
variance of ¥, 1s given by:
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Where
6. = The population variance of the sensitive
variable
o; =  The population variance of the non sensitive
variable
f=2f =M andr, =0
N N N

Efficiency comparison: Here we present the efficiency
comparison of the proposed estimator, ¥,, with other
estimators. The proposed estimator will be more efficient
than other existing estimators if the following condition
holds:

Var (i )-Var(y_) >0

i=12

(1)

Trappmann ef al. (2013) estimator, (i, with the proposed
estimatory

Consider;, Var (ﬂsl)_var(ysp ) 20

ZG
. s+11 -
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8 = >0
(H+H) 5 (ng+nn )2

S
i, mlnzg i=1
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(12)

Since, all the terms n the nght hand side of Eq. 11 are
all positive, then theinequality always holds and we can
mfer that the proposed estimator, ¥, is more efficient
than f, .

‘When sampling without replacement: We have:

(Var(f,,))’ 5o (13)

Var((_ -Var(d_)+ >
A VA B e Vardi)

And taking a close look at the difference, we
have Var(, )-Var(ii,) :

2

2
o { 1 +L -JZG >0
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Which holds since, N is large and g=2. This implies
that the inequality in Eq. 13 holds and we can therefore,
nfer that the proposed estimator, ¥, 15 mere efficient than
fiy when sampling 1s done without replacement.

Hussain et al. (2015) estimator, i, with the proposed
estimator, ¥_:
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Since, the term in the RHS of the above inequality is
positive, the mequality always holds. We therefore, infer
that the proposed estimator, ¥, 1s more efficient thanfy.

When sampling without replacement: We have:

(Vard)) |
Var(, )+ Var(fL,, ) B (15)

(Var(i,))
Var(pl'sl )+Var0152 ) -

Var(asz )' Val"(!lsg )

Equation 15 always holds, since, variance 1s a positive
quantity and as such we can also infer that the proposed
estimator ¥, is more efficient than f. when sampling is
done without replacement.

Percentage relative efficiency: The Percentage Relative
Efficiency (PRE) of the propesed estimater, ¥, with
respect to other estimators is defined as:

Varthy) «100
Var(ySp h] (16)
i=12

PRE(Y,. fi,) =

Using the definition in Eq. 16 above and with the data
provided by Hussain et af (2015) PRE of the proposed
estimater, ¥,, with respect to Trappmann ef al. (2013);
Hussain ef al. (2015) estimators represented by faand &
respectively have been obtained for the different fixed
values of the parameters involved and the results are
presented in Table 1-9. From the results, it can clearly be
seen that the proposed estimator ¥, is always more
efficient than the estimators . and i .

Some alternative classes of estimators for p,

Searl’s method of estimation: By application of
Searl’s (1964) method of estimation, we define a family of
estimators for the population mean of sensitive variable |1,
as follows:

YSl = A‘ysp (1 7)
Where:
A = A constant to be suitably chosen by the
mterviewer or researcher
¥, =  The proposed estimator defined in Eq. 8 above

The bias of ¥, is given by:
Bias(y,, ) = (A-1)u, (18)
And the mean square error, MSE is given by:
MSE(y,,) = A7V, (7, )+ ] (1%

Efficiency comparison: The proposed estimator ¥ ;is
relatively more efficient than ¥, if:
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Table 1: PRE of ¥, with respect to fiy and fi, for n= 50, n, =n, = 25 and different valuesn ofg, &2 with i 6l =01

i=1

Y oi=01

g=2 g=3 g=35 g=10
o’ ¥, with fu, ¥, with i, ¥, With i ¥, with i, ¥, with f1 ¥, With i, ¥, with f1 ¥, with i,
0.25 427.2727 130.5556 444.6809 129.0123 454.3307 128.2222 458.5657 127.8889
0.5 366.6667 137.5000 373.9130 136.5079 377.7778 136.0000 379.4411 135.7857
1 334.1463 142.7083 337.3626 142.1296 339.0438 141.8333 339.7602 141.7083
2 317.2840 146.0227 318.7845 145.7071 319.5609 145.5455 319.8901 145.4773
3 311.5702 147.2656 312.5461 147.0486 313.0493 146.9375 313.2622 146.8906
4 308.6757 147.9167 309.4183 147.7513 309.7902 147.6667 309.9475 147.6310
5 306.9652 148.3173 307.5388 148.1838 307.8337 148.1154 307.9584 148.0865
10 303.4913 149.1422 303.7736 149.0741 303.9184 149.0392 303.9796 149.0245
20 301.7478 149.5668 301.8878 149.5325 301.9596 149.5149 301.9899 149.5074
50 300.6997 149.8257 300.7554 149.8119 300.7839 149.8048 300.7960 149.8018
100 300.3499 149.9127 3003777 149.9057 300.3920 149.9022 300.3980 149.9007
200 300.1750 149.9563 300.1889 149.9528 300.1960 149.9510 300.1990 149.9503
Table 2: PRE of ¥, with respect to i and i , for n=50, n; =n, =25 and different valuesn of g &7 with igﬁ =1

i=1
Lot

g=2 g=3 g=>5 g=10
o? 7, withfi ¥, withj, 7, withf ¥, withj, v, with i, 7, withji_, v, with i, 7, withji,
0.25 1000.0000 111.1111 1346.1540 108.0247 1651.7240 106.4444 1830.7690 105.0247
0.5 766.6667 115.0000 018.1818 112.2222 1025.9260 110.8000 1080.3920 110.2000
1 580.0000 120.8333 640.0000 118.5185 676.9231 117.3333 694.0594 116.8333
2 455.5556 128.1250 478.9474 126.3889 492.1569 125.5000 498.0100 125.1250
3 407.6923 132.5000 421.4286 131.1111 428.9474 130.4000 432.2259 130.1000
4 382.3529 135.4167 391.8919 134.2593 397.0297 133.6667 399.2519 1334167
5 366.6667 137.5000 373.9130 136.5079 377.7778 136.0000 3794411 135.7857
10 334.1463 142.7083 337.3626 142.1296 339.0438 141.8333 339.7602 141.7083
20 317.2840 146.0227 318.7845 145.7071 319.5609 145.5455 319.8901 1454773
50 306.9652 148.3173 307.5388 148.1838 307.8337 148.1154 307.9584 148.0865
100 303.4913 149.1422 303.7736 149.9007 303.9184 149.0392 303.9796 149.0245
200 301.7478 149.5668 301.8878 149.9503 301.9596 149.5149 301.9899 1495074
Table 3: FRE of ¥, with respect to i and j_, for n =50, n, =n; = 25 and different valuesn of g o? with igi —100

i=l
¥ o =100

g=2 g=3 g=35 g=10
o g, wihp,  §,wihi, oy, wihp, g, wihg, oy, wihp, oy, withp, g wilhp, 3, wihj,
0.25 1686.138 106.3046 3625.184 102.8367 9523.529 101.0612 32140.00 100.3121
0.5 1672.549 106.3591 3553.589 102.8955 9011.111 101.1222 26833.33 100.3741
1 1646.154 106.4677 3419.266 103.0127 8140.000 101.2438 20200.00 100.4975
2 1596.296 106.6832 3181.356 103.2453 6833.333 101.4851 13566.67 100.7426
3 1550.000 106.8966 2977.165 103.4756 5900.000 101.7241 10250.00 100.9852
4 1506.897 107.1078 2800.000 103.7037 5200.000 101.9608 8260.000 101.2255
5 1466.667 107.3171 2644.828 103.9395 4655.556 102.1951 6933.333 101.4634
10 1300.000 108.3333 2089.474 105.0265 3100.000 103.3333 3918.1818 102.6190
20 1077.778 110.2273 1514.286 107.0707 1933.333 105.4545 2195.2381 104.7727
50 766.6667 115.0000 918.1818 112.2222 1025.926 110.8000 1080.3922 110.2000
100 580.0000 120.8333 640.0000 118.5185 676.9231 117.3333 694.0594 116.8333
200 455.5556 128.1250 478.9474 126.3889 492.1569 125.5000 498.0100 125.1250

MSE(¥ -V (¥ ) <0

(3 )V,, (7, O a? <0

It can be shown that M3E(3,.)-V.,, (7,,) <0 if and only if:

Mj _Vnpt (ysp )

WAV (F,)

<A<l

(20)
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Table 4: PRE of ¥, with respect to fiy and fi, for n= 50, n; =20, n, = 30 and different valuesn ofg, & with ici —0.1

i=l

3 oi=01
g=2 g=3 g=35 g=10
o; ¥., With fi, ¥, With i, ¥, With b, ¥, With i, ¥, With 1, ¥, With i, ¥, With 1, ¥, Withii,,
0.25 478.7879 126.4000 498.9342 125.0667 510.1030 124.3840 515.0066 124.0960
0.5 417.4603 131.5000 426.0870 130.6667 430.6878 130.2400 432.6680 130.0600
1 384.5528 135.1420 388.4615 134.6667 390.5046 134.4220 391.3753 134.3200
2 367.4897 137.3846 369.3370 137.1282 370.2927 136.9969 370.6980 136.9415
3 361.7080 1382105 362.9151 138.0351 363.5375 137.9453 363.8010 137.5074
4 358.7992 138.6400 359.6953 138.5067 360.1565 138.4384 360.3516 138.4096
5 357.0481 138.9032 357.7603 138.7957 358.1268 138.7406 358.2817 138.7174
10 353.5328 1304426 353.8846 139.3880 354.0650 139.3600 354.1413 139.3482
20 351.7686 139.7190 351.9434 139.6915 352.0329 139.6774 352.0707 139.6714
50 350.7080 139.8870 350.7776 139.8760 350.8133 139.8703 350.8283 139.8679
100 350.3541 139.9434 350.3888 139.9379 350.4067 139.9350 350.4142 139.9338
200 350.1771 139.9717 350.1944 139.9689 350.2033 139.9675 350.2071 139.9669
Table 5: PRE of ¥, with respect to i and i, for n= 50, n, =20, n, =30 and different valuesn of o 5?2 with i ol =
izl
> ?:1031 -1
g=2 g=3 g=>5 g=10
0@ y,withi, oy, wihi, oy wihi, oy, withg, oy witg, oy wihp, oy, witp, 3, wip,
0.25 1058.333 110.4348 1426.9230 107.5362 1752.2990 106.0522 1942.949 105.4261
0.5 822.2222 113.8462 986.3636 111.2821 1103.0860 109.9692 1162.092 109.4154
1 633.3333 118.7500 700.0000 116.6667 741.0256 115.6000 760.0660 115.1500
2 507.4074 124.5455 534.2105 123.0303 549.3464 122.2545 556.0531 121.9273
3 458.9744 127.8571 475.0000 126.6667 483.7719 126.0571 487.5969 125.8000
4 433.3333 130.0000 444.5946 129.0196 450.6601 128.5176 453.2835 128.3058
5 417.4603 131.5000 426.0870 130.6667 430.6878 130.2400 432.6680 130.0600
10 384.5528 135.1429 3884615 134.6667 390.5046 134.4220 391.3753 134.3200
20 367.4897 137.3846 369.3370 1371282 370.2927 136.9969 370.6980 136.9415
50 357.0481 138.9032 357.7605 1387957 358.1268 138.7400 358.2817 138.7174
100 353.5328 139.4426 353.8840 139.3880 354.0650 139.3600 354.1413 139.3482
200 351.7686 139.7190 351.9434 139.6915 352.0329 139.6774 352.0707 139.6714
= . . . _ _ _ . . 4
Table 6: PRE of ¥, with respect to | and i, for n=50, n, = 20, n, =30 and different valuesn of 3 52 v Yo? =100
1=l
3 F o =100
g=2 g=3 g=35 g=10
o v, withp,  y, withp, g, withi, v, Withp, 3, withj, ¥, With o, ¥, With o, v, Wb,
0.25 1752.640 106.0500 3772.982 102.7226 9918628 101.0185 33483.33 100.2996
0.5 1738.888 106.1017 3699.282 102.7783 9387.037 101.0768 27961.11 100.3589
1 1712179 106.2028 3561.009 102.8893 8483.333 101.1928 21058.33 1004771
2 1661.728 106.4032 3316.101 103.1094 7127.778 101.4229 14155.55 100.7115
3 1614.881 106.6012 3105.905 103.3268 06159.524 101.6503 1070416 100.9430
4 1571.264 106.7969 2923.529 103.5417 5433.333 101.8750 8633.333 101.1719
5 1530.555 106.9903 2763.793 103.7540 4868.519 102.0971 7252777 101.3981
10 1361.904 107.9245 2192.105 104.7799 3254.762 103.1698 4115.151 102.4906
20 1137.037 109.0429 1600.000 106.6667 2044.444 105.1429 2322222 104.5000
50 822.2222 113.8462 986.3636 111.2821 1103.086 109.9692 1162.091 1094154
100 633.3333 118.7500 700.0000 116.6667 741.0256 115.6000 760.0660 115.1500
200 507.4074 124.5455 534.2105 123.0303 549.3464 122.2545 556.0531 121.9273
Where vopt 1s defined by Eq. 9. :
LGy y Eq S @
M's +Vnpt (YSp )

Optimum estimator amongst the family of estimators,
¥ To find the optimum value of A which minimizes the
Mean Square Error (MSE) of, ¥, we differentiate Eq. 19
with respect to A and equal to 0. Thus:

Thus, the optimum estimator, say, ¥, s given by:

YSAupt

= 7\‘aptysp

(22)
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Table 7: PRE of ¥, with respect to fiy and fi, for n= 50, n, =30, n, = 20 and different valuesn ofg, 5* with ici —0.1
i=]

Yioi=01

g=2 g=3 g=35 g=10
o7 Y. with i | Y. with i , 7. with fi 7. with i, Y. with i Y. with i, Y. with i 7., with i,
0.25 403.0303 133.0000 419.1489 131.3333 428.0840 130.4800 432.0053 130.1200
0.5 338.0952 142.0000 344.5652 140.8889 3480159 140.3200 349.5010 140.0800
1 303.2520 149.2000 306.0440 148.5333 307.5033 1481920 308.1252 148.0480
2 285.1852 154.0000 2864641 153.62%6 287.1257 153.4400 287.4063 153.3600
3 279.0634 155.8462 279.8893 155.5897 280.3151 1554585 280.4954 155.4031
4 275.9834 156.8235 276.5928 156.6275 276.9064 156.5271 277.0391 156.4847
5 274.1298 157.4286 274.6120 157.2698 274.8601 157.1886 274.9650 157.1543
10 270.4073 1586829 270.6437 1586016 270.7650 158.5600 270.8163 158.5424
20 268.5393 159.3333 268.6563 1592922 2687163 159.2711 268.7416 159.2622
50 267.4163 159.7313 267.4628 159.7148 267.4866 159.7063 267.4967 159.7027
100 267.0416 159.8653 267.0648 159.8570 267.0767 159.8528 267.0817 159.8510
200 266.8541 159.9326 266.8657 159.9284 266.8717 159.9263 266.8742 159.9254

Table 8: PRE of ¥, with respect to fiy and fi, for n= 50, n, =30, n, = 20 and different valuesn ofg, o2 with i 6l=1

i=1

lg:lcrf] =1
g=2 g=3 g=35 g=10
o’ ¥, withji, v, withj, g, wihp, g, withji, g, withjy, v, with i, v, with i, 5., wili i,
0.25 1016.6670 110.9091 1369.2300 107.8788 1680.4600 106.3273 1862.8200 105.6727
0.5 To6.0667 115.0000 9181818 112.2222 1025.9260 110.8000 1080.3920 110.2000
1 506.0667 121.4286 625.0000 119.0476 660.8974 117.8286 677.5578 117.3143
2 433.3333 130.0000 455.2632 128.1481 467.6471 127.2000 473.1343 126.8000
3 382.0513 135.4545 39406429 133.9394 401.5351 133.1636 404. 5404 132.8304
4 354.9020 139.2308 363.5135 137.9487 368.1518 137.2023 370.1579 137.0154
5 338.0952 142.0000 344 5652 140.8889 348.0159 140.3200 349.5010 140.0800
10 303.2520 149.2000 306.0440 148.5333 307.5033 148.1920 308.1252 148.0480
20 285.1852 154.0000 286.4641 153.6296 287.1257 153.4400 287.4063 153.3600
50 274.1294 157.4286 274.6120 157.2698 274.8601 157.1886 274.9650 157.1543
100 2704073 158.6829 270.0437 158.6016 274.8601 158.5600 270.8163 158.5424
200 268.5393 159.3333 268.0563 159.2922 268.7163 159.2711 268.7416 159.2622

Table 9: PRE of ¥, with respect to fiy and fi, for n= 50, n, =30, n, = 20 and different valuesn ofg, & with ici =100
i=]

3 o =100
g=2 g=3 g=35 g=10
o v, withp, g, withp, g, withg, v, withp, 3, withj, 7., with i, 7., with i, v, Wil i,
0.25 1751.815 106.0539 3771.149 102.7239 9913.725 101.0190 3346667 100.2997
0.5 1737.255 106.1078 3695.694 102.7811 9377.778 101.0778 27933.33 100.3593
1 1708.974 106.2151 3554128 102.8951 8466.667 101.1952 21016.67 100.4781
2 1655.556 106.4286 3303.389 103.1217 7100.000 101.4286 14100.00 100.7143
3 1605.952 106.6403 3088.189 103.3465 6123.809 101.6601 10641.67 100.9486
4 1559.770 106.8504 2901.470 103.56%96 5391.667 101.8898 8566.667 101.1811
5 1516.667 107.0588 2737.931 103.7908 4822.222 102.1176 7183.333 101.4118
10 1338.095 108.0769 2152.632 104.8718 3195.238 103.2308 4039.394 102.5385
20 1100.000 110.0000 1546.429 106.9134 1975.000 105.3333 2242.857 104.6667
50 T66.6667 115.0000 918.1818 112.2222 1025.924 110.8000 1080.392 110.2000
100 566.6667 121.4286 425.0000 119.0476 4660.8974 117.8286 677.5578 1173143
200 433.3333 130.0000 455.2632 128.1481 467.6471 127.2000 473.1343 126.8000
S _ , B
It bias 1s given by: B TR (ysp) (24)
MSE(T ) = 5 7y
. — (23) M, +V”Ft (ySF )
Bias ( YSlupt ) = (}“upt _1)“"5

The Relative Efficiency (RE) of the optimum estimator

And the Mean Square Error, MSE is given by: ¥ .0 With respect to the proposed estimator ¥, is given
by RE- Viu¥o)
MSE(F 1)
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vV (v
RE = 1+ﬁ 25

s

Since, RE = 1, it is clear that the optimum estimator
Yo 18 always more efficient than the proposed
estimator, ¥,

Estimation method which utilizes priori information: The
use of prior knowledge about a population parameter has
been proven to improve the precision and efficiency of
estimation of the study variable. Bayesian method of
estimation that utilizes prior information in the form of
prior distribution is well kknown for this. Tn some cases,
prior mformation are used alongside with sample
mformation to get a more precise Statistically efficient
estimate of the parameter of interest. In the light of
Thompson (1968) and Mathur and Singh (2008), we define
another estimator for u,. Let u,; be the prior estimate or
guessed value of the population mean of sensitive
variable, i, then we define a class new of estimators as:

Vo =Ky, +(1-K)u,, 0<K <1 (26)

where, K is a constant specified by the researcher
according to his/her belief in the priorestimate . Tf K is
close to zero, it shows his/her strong belief in pand if K
1s close to 1 it indicates strong belief in i The bias of ¥
1s given by:

Bias(y, ) = (1-K)u,w (27)

And the Mean Square Error, MSE is given by:
MSE(y,) = w (1K) u+K*V,_(¥,) (28)

Where = Mo ol

s

Efficiency comparison: The suggested estimator ¥, is
more efficient than the estimator ¥, it

MSE(¥, -V, (¥, =0
It can be shown that MSE(F,.)-V,,.(7,,)< 0 if and only if’

2,2 —V e
7“: “; o ({“’) <K <1 (29)
WUV (V)

Where V,, (¥,,) is given by Eq. 9.

Optimum estimator of ¥,: To obtain the optimum value
of K that mimmizes the MSE (¥,,), we differentiate Eq. 28
with respect to K. Thus:

2 ZWZMSZ — (30)
W V()

opt

Therefore, the optimum estimator, say ¥ ., is given by:
yskupt = Knpt Ysp +(1_Kupt )MSD (31 )
It Means Square Error (MSE) 1s given by:

wu'v (¥
MOE(5,, ) =i Vanlla) )
w Ms +Vopt ( YSp )

The Relative Efficiency (RE) of the optunum estimator
¥ o with respect to the proposed estimator ¥, 1s given
by e Veula) -

MSE(Faon )
RE -1+~ (33)

2.2
s

Since, RE =1, it 13 clear that the optimum estimator,
¥ o 15 always more efficient than the proposed estimater

Y

sp*
RESULTS AND DISCUSSION

Some alternative family of estimators using auxiliary
variable: The use of auxiliary mformation has been proven
to improve the process of estimation of study variable in
the literature. The procedures of ratio, product and
regression methods of Estimation are well known for
this. Cochran (1940) first introduced ratio estimator of
the population mean to show the contribution of
supplementary information in the estimation process.
The use of auxiliary mformation can also be utilized in
sensitive surveys (as in usual surveys) of which our
interest is to estimate the parameter (say mean or
proportion) of the population bearmng stigmatizing
attribute. Awaliary information can either be utilized at the
design or estimation stage. Yan (2005), Diana and Perr
(2009, 2010) and Hussain et al (2015) are some of the
studies that utilize auxiliary information at estimation
stage. This research also proposes a class of estimators
which utilizes the known supplementary mformation. From
Eq. 7 we have that the population mean of sensitive
variable 1s estimated by:

f, = o0, ol

Where:

2
oo, =1, !151 =y,-y, and !:Lsz _{erZ“‘ri }/@
il

We can respectively, replace:
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?1:?2 andyby?]pg yZR and yR:
?IF’ ?ZF and ?F’ and ?llr’ ?er and ylr

Where:
Yie = X’yR %; y1P:>i_?’yF:%;
Vi =¥, 1(XX), ¥, = yb(Xx)

(1=1, 2) and X and % are the population mean and sample
mean of auxiliary variable, respectively in order to estimate
1. We will now look at these methods of estimation one
after the other.

Ratio method of estimation: By replacing ¥,, ¥, and ¥ by
¥ . ¥.p, respectively, in Eq. 7, we propose a new class of
estimators given by:

Yot = Ogkby TOM

Where:

2
“‘511 Yir Yo and [i Moy _(yR_EMti }/é
i=1

Then the new class of regression estimators 1s given by:

g
yR '2 By
1=1

g

yspl =0y (le_yZR)+G‘ (34

The biases of ¥z and ¥ (1 = 1, 2) are respectively,
given by:

Bias(V, ) n—i(ci 0,0, C. )
And:

o 1o,

Bias(¥, )= Y(CX—pYXCyCX)

And the bias ¥;, of 1s given by:

Bias(?R)*?f (Ci-p,CC,)

=y TR

The Mean Square Errors (MSEs) of ¥; and ¥ are
respectively, given by:

MSE (¥, )= 1f(0 +R/G;-2R,p, .G, O, )
n

FiE ¥
1

And:

yEOF X

MSE(yR):E(o;+R2c; -2Rp,0,0, )
n
Where:

f==.X

n
N

The population mean of the auxiliary variable and N
the population size. Now, the bias of ¥, is given by:

spl

Bias(yspl) = oy Bias(fi, ) +o,Bias(f,,, )

He&(f@pl) = (WZH: O pﬂC

(35)

Mean square error of ¥_;: The mean square error MSE of
the suggested estimator, ¥, is given by:

MSE(yspl) = O"'12 MSE(ﬁLsu)*O@ MSE(ﬁ'sm )
Where iy and . as defined above we have that:

MSE(yspl) [MSE )+MSE(;1521)]
'2051MSE(“'s21 ) +MSE(}:\L521)

And at optimal pomnt:

(MSE@,)) (36
MSE(f,,, )+ MSE(,,)

MSE,, (¥,1) = MSE(fL, )-

511

The MSE(fi,;,) =MSE (F;x ) tMSE (T2 ) and MSE(ji.., ) are given by:

oSk 200 |
(i ) =18 o it g, 00,1

n-nfnfl +(§Hm)d
nn, | E0OX
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202 2 202 2 gGZ ZgRloi_DJ‘l
g s+gRI x_zg RIGSGX+Z t1+T

GZ(ZMQ) 2ep_ G0, 2“1:

X

:x:\u

Product method of estimation: By replacing ¥, ¥, and ¥
by ¥, ¥
of estimators given by:

1 Tespectively in Eq. 7, we propose a new class

Yz = Ol TOLU

Where:

=l

q EMW
'c;

gz =¥ip-Yop and L, =

Then the new class of regression estimators 1s given by:

|
i e
F

y8112 = G‘l(ylp'yzp)JrOLz =L (37)

aQ

The biases of ¥, and ¥, (1 = 1, 2) are respectively,
given by:

Bias(y,) =

TiE ¥

it (c+p cc)

1

And:

Bias(y, ) = %?(c§+pwcycx)

And their Mean Square FErrors (MSEs) are

respectively, given by:

£
MSE(y, )= —(Gf, +Rlo.+2R p, .0, O, )
And:
S I
MSE(y, ) =—(0,+R’0; +2Rp,,0,5,)
n
where:
Y Y —
R =, R=—,f=0 f=2 %
X X N N

The population mean of the auxiliary variable and N
the population size. Now, the bias of ¥, is given by:

10

Bias(3,,) =0,

(38)

Mean square error of ¥2: The mean square error of ¥,
1s given by:

MSE (?522) = OLfMSE(!:Lsu)JrOLgMSE(ﬁszz)

It alse follows that at optimal point, MSE of ¥, will
be given by:

(MSE(R.)) (39
l\/ISE(ﬁiS12 ) +MSE(}1522)

MSE (yspZ ) = MSE(p‘szz )'
The MSE(f,;;) = MSE(Y s )*MSE (¥ ) and MSE(fi.., ) are given by:

2R1022H1 X GGZH]

R £
MSE(H,IZ):;; o +Rlq,+2Rp,00,+ 5; %
P 2
nn £ f gz L

nn,

1=1

(40)

%RI&ZH
g+ Rl +2¢'Rp, 00 +202+

Gi(ZH,-)Z 20,00, 31,
I~

MSE(p‘szz) E

(41)

Where:
R =

1

and p_, = psxg%
¥

Regression method of estimation: Equally, by replacing
¥,. ¥, and ¥ in our original model by ¥, ¥,, and ¥,
respectively in Eq. 7, we propose a new family of
regression estimators:

K
X
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ys}ﬁ =0 (ﬂsm =+, (ﬁsza)

Where:
g2
_ ylr_Z“ﬁ
f: =¥p-¥a and ., :lT:l
Therefore:
g2
ylr_zu‘m
Yz = o (T ¥y, ) 00, | —=—
g
Where:
o+, 1
Yo = ¥+hix=)
Vi = Vtb(xx)
i = 1,2

Since, the regression coefficient may or may not be
known, we consider both cases.

ir

‘When coefficient b is known: With the estimators
¥ +b(Xx)and ¥, = ¥+b (Xx) (1=1, 2) we have that:

Bias(y,, ) = Bias{y,) =0
And their variances are given by:

0,0, ) (42)

Var(y, ) = ﬂ(cs; +b’c?-2bp
n,; '

And

Var(y, ) = E(Gi +b'c}-2bp,,0,0, ) (43)
n

Since, b is a known regression coefficient, then:

b= Oy — Py:Cy
2
GX GX
And:
b= Opx _ PyaOy,
-z T
GX GX

(1=1, 2) also mmimizes the values of Var (¥,) and Var (¥,))
(i =1, 2), respectively. The substitution of the optimal
value of b in Eq. 42 and 43 gives the minimum variances of
¥, and ¥,. Thus:

ll;fl G; (1‘95,,}()

1

Varmin (yﬂr ) =

And:

1-f

var, (v,) = ?oj, (1-02,)

11

Recall p, = p,go/o, and it also follows that
Py1z = P04/0y and p,. = 0, since, p,, = 0. Now:

Var(yspa) = CXIZVBI(L\LSH)-FOL;VBI"(}CLm)

Tt follows from study 4.2 that the optimum variance of
¥, s given by:
(Var(ﬁm ))2
Var(f,; )+ Var(fl,,; )

(44)

Vupt (yspii) = Var(,lszii)_

With appropriate substitution, we can write the
expression for the varance of the suggested estimator,

Y. . as:

sp3

Var(yslga) =PB.o;

(45)

2 i=1 2
BlGS 7 2 Msxz
&)

g
2 2 - 2 Gfi
[Bzﬁs (1_psx )+BBZ G, }JFBUSS I+ :;202
1=1

s

2
“Pex

Where:

B, 1-tn

B, 1-f/m,

B; = nnfinf

When b is unknown: Suppose in the regression of
y = bitbx+e where by 15 a constant term and e 1s a random
error term, the regression coefficient, b 1s not known.
The unbiased ordinary least square estimator of b is given
byb=o, /ol which also minimizes the error sum of
squares. Thus, we have new class of estimators as:

g
ylr '2 By
1=1

ys}ﬁ = 051(3711r Ve )Jraz (46)

If the same steps m Eq. 43 are followed, we will arrive
at the same variance and as such there is no need to
consider bothcases or regression coefficient separately,
since, the result in one case remamns valid in the other
case.
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Efficiency comparison
The proposed ¥, with ratio estimator, ¥_;: The estimator

¥, will be more efficient than the estimator ¥, if:

spl
Vi (Vg MBE 1, (7,0 > 0

From Eq. 10 and 36, we have:

(Varmﬂ))z

Var(fi, -
) Var(L, y-Var(fi, )

-{MSE(}:LZJ‘ (MSE(QSZJ) }>0

MSE(L\LSH )—FMSEKp“sZ 1 )
(47)
The above mequality in Eq. 52 can only hold

if Var(fl,;)-MSE{fi,;, ) and Var(ji, >MSE({l,,) are all non negative.
From Eq. 10 and 37, being non negative implies that:

. 2
GX (gRlJer Zu‘m }
1=1
=

2go

(48)

psx

s

From Eq. 5 and 48, Var(i, )} MSE(},,) being non negative
umplies that:
=
0, (R +X"
(R ;Mm) N n,(14£,)
n,(1f))
g (49)

pSX >

We infer that the estimator ¥, is more efficient than
estimator ¥, if the above mequalities m Eq. 48 and 49 are

satisfied.

The proposed estimator, ¥, with the product estimator,
¥..: The estimator ¥, will be more efficient than the
estimator ¥, ift

Vopt (ysp )_MSEapt(yspZ ) > 0

From Eq. 10 and 40, we have:

Var(ljl-sz)'—(\farmﬂ)) -
Var(i, )+Var(l,) (50)
MSE(,,,)- (MSF(,)

MSE(f,, ¥ MSE(f,,,)

The above inequality in Eq. 50 can only hold if
Var(i, )-MSE(fl,,) and  Var(fi,)-MSE(i,;) are all non negative.

12

From Eq. 10 and 42, Var(l,)-MSE({;) being non
negative immplies that:

e
GX{gRﬁXlE“ﬁ} (1)
i=1

2g0

pSX <-

s

From Eq. 5 and 41, Var(i,,)-MSE(,) being non negative
implies that:

e
GX (Rl +X71 E"‘Lti
<

i=1

Lnlu-fz) i
nz(l'ﬂ) 2653(2(1%1{;(1%“‘“}
 (52)

pSX
20,

We infer that the estimator ¥, 1s more efficient than
estimator ¥, if the above inequalities in Eq. 51 and 52 are
satisfied.

The proposed estimator, ¥, with regression estimator,
¥t The estimator ¥, will be more efficient than the
preposed estimator ¥, 1f

Vnpt (ysp )-Vuptt (yspB ) > 0

From Eq. 10 and 40, we have:

Var({L,, ) (Var(h,,))’ -
#7 Var(f, )+ Var(f,, )
( Var(fi_, ))2
Var(fi,, )+ Var(fL,,)

(53)

Val"(ﬁszg )'

The above mequality in Eq. 58 can only hold
if Var(fiy)-Var(fiy) and Var(i, FVar(izyareall non negative.
From Eq. 10 and 45, Var(ii,,)-Var(ly) being non negative
implies that:

P, >0 (54)

From Eq. 5 and 45, Var(il,)-Var(i,;) being non negative
implies that:

P, >0 (55)

With the results in Eq. 34 and 55 we can infer that the
estimator ¥, is more efficient than the proposed estimator,

Ratio estimator, ¥, with regression estimator, ¥,: The
estimator ¥ ; will be more efficient than the estimato ¥
if:

spl
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MSE (¥ -V (Fpa) > 0
From Eq. 36 and 45, this becomes:

(MSEGA,,))
MSE(L , W+MSE(d,,,)

(Var(ﬂsn))z } -0

MSE(fLle)—

(56)

{Vm(’:'““)' Var(i, ) Var(i,,)

The above mequality m Eq. 61 can only hold if
MSE(fLy )-Var(lle;) and MSE(f,y )-Var(il,,) are all non negative.
From Eq. 37 and 45, MSE{,, )-Var(io;) being non negative
implies that:

2
_ &
{gcspsx -G, [gRﬁX'lEuﬁ JJ 20
i=1

(37)

From Eq. 37 and 45, MSE({, )}-Var(l ) being non
negative implies that:

2
_ _ B
1n_f1{ Gspsx _GX (Rl +X-1 Eum )} +

1 1=l

2
J>0

Since, the inequalities in Eq. 55 and 58 always hold,
1t implies that Eq. 56 1s satisfied and we can infer that the
estimator ¥, is more efficient than the estimator, ¥,,.

(58)
- _ g
m[oxxlzun

nz i=1

Product estimator, S_fmwith regression estimator, E_fslﬁ:
The regression estimator ¥, will be more efficient than the
estunator ¥, 1ft

MSE ., (Y2 - Vops (¥ ) > 0

From Eq. 40 and 45, we have:

MSE(,, ) (S Ra)
MSE({L,;, WMSE({l,,) (59)
Var(!:"szg ) (Vﬂf(flsza ))

Var(n'slj )+Var(}1523)

The above inequality in Eq. 59 can only hold if
MSE (L, )-Var(llo;) and MSE{il.,)-Var(ii,,) are all non negative.
From Eq. 42 and 45, MSE(l,;;)-Var(il,;;) being non negative
implies:

13

2
_ g
{g“’spw*ﬁx(&wxlzug} S

1=1

From Eq. 41 and 45, MSE(Q,,)-Var(ly,) being non
negative implies that:

2
- _ g

1f1{Gsp'sx +GX(R1+X-1 Zl“l‘n)] +
I

1 i=1

(61)

£ s Y
— 6, X' Yu, | 20
nz 1=1

Since, the mequalities in Eq. 60 and 61 always hold,
1t therefore, means that Eq. 6015 satisfied and we can infer
that the estimator ¥, is always more efficient than the
estimator, ¥ ..

CONCLUSION

In this research, we proposed an estimator which is
a linear combmation of two existing estunators
(Trappmann et al., 2013; Hussain ef al., 2015) estumators
in the literature. The proposed estimator, ¥,, has been
shown to be better when its efficiency was compared to
those of theexisting estimators. This provides a good
alternative i measurement of sensitive items in the
population especially where accuracy and efficiency are
of primary concern. Furthermore, we presented some
families of improved estimators of the population mean of
sensitive variable, p, using different procedures. It has
also been shown that these classes of estimators under
certain conditions are more efficient than the proposed
estimator, ¥,. Moreover, the results obtained after
comparing the efficiencies among these classes of
estimators were consistent with those of the existing
literature.

RECOMMENDATIONS

We recommend the application of this technique in
the on going debate of sensitive studies as an altemative
technique especially where cost 1s not an ssue and
efficiency and precision are of interest.
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