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Abstract: This study, investigate the effects of Dufour and Soret number on flow of a viscous incompressible
electrically conducting fluid in the presence of uniform transverse magnetic field with variable thermal
conductivity and non uniform heat source/sink near a stagnation point on a non-conducting stretching sheet.
The equations of continuity, momentum and energy are transformed inte ordinary differential equations and
solved numerically using shooting method together with generalised Thomas algorithm. The velocity,
temperature and concentration distributions are discussed numerically and presented through figures.
Skin-friction coefficient, the Nusselt and Sherwood number at the sheet are derived, discussed numerically and
their numerical values for various values of physical parameter are presented through table.
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INTRODUCTION

In fluid dynamics, a stagnation point is a point in a
flow field where the local velocity of the flud is zero.
Stagnation points exist at the surface of objects n the
flow field where the fluid is brought to rest by the object.
A stagnation point occurs whenever a flow impinges on
a solid object.

Study of heat transfer in boundary layer over
stretching surface find applications in extrusion of plastic
sheets, polymer, spinning of fibers, cooling of elastic
sheets, etc. The quality of final product depends on the
rate of heat transfer and therefore cooling procedure has
to be controlled effectively. The MHD flow in electrically
conducting flnd can control the rate of cooling and the
desred quality of product can be achieved. Liquid
metals have small Prandtl number of order 0.01~- 0.1 (e.g.,
Pr=0.01 is for Bismuth, Pr = 0.023 for mercury, etc.) and
are generally used as coolants because of very large
thermal conductivity. Flow m the neighborhood of a
stagnation pomt mn a plane was mmtiated by Hiemenz
Fluid flow and heat transfer characteristics on stretching
sheet with variable temperature condition have been
mvestigated by Grubka and Bobba (1985) (Fig. 1).

Chamkha and Khaled (2000) considered Hiemenz
flow in the presence of magnetic field through porous
media. Sharma and Mishra (2001) investigated steady
MHD flow through horizontal charmel: Lower bemng a
stretching sheet and upper being a permeable plate
bounded by porous medium. Sriramalu et al. (2001)
studied steady flow and heat transfer of a viscous
mcompressible fluid flow through porous medium
over a stretching sheet. Mahapatra and Gupta (2001)
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Fig. 1: Physical configuration and coordinate

investigated the magneto hydrodynamic stagnation-point
flow towards 1sothermal stretching sheet and pointed that
velocity decreases/increases with the increase in magnetic
field intensity when free stream velocity is smaller/greater,
repectively than the stretching velocity. Mahapatra and
Gupta (2002) studied heat transfer in stagnation-point
flow towards stretching sheet with viscous dissipation
effect. Khan et al (2003) presented viscoelastic MHD
flow, heat and mass transfer over a porous stretching
sheet with dissipation energy and stress work. Pop ef al.
(2004) discussed the flow over stretching sheet near a
stagnation point taking radiation effect. Seddeek and
Salem (2005) investigated the heat and mass transfer
distributions on stretching surface with vanable
viscosity and thermal diffusivity. Recently Okedoye and
Bello (2008), discussed MHD flow of a uniformly
stretched vertical permeable surface under oscillatory
suction velocity and Sharma and Singh (2009) report the
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effects of variable thermal conductivity and heat
source/sink on MHD flow near a stagnation point on a
linearly stretching sheet.

Aim of the present study 1s to investigate effects of
Dufor, Soret numbers, heat and source/sink on flow of a
viscous incompressible electrically conducting fluid and
heat transfer on a non-conducting stretching sheet in the
presence of transverse magnetic field near a stagnation
point. Linear stretching of the sheet is considered
because of its simplicity in modelling of the flow and heat
transfer over stretching surface and further it permits the
similarity solution which are useful in understanding the
mteraction of flow field with temperature field. The heat
source/sink 1s included in the work to understand the
effect of internal heat generation and absorption (Sharma
and Singh, 2009).

Formulation of the problem: Consider the two
dimensional stagnation poit flow of a viscous
incompressible electrically conducting fluid impinging
perpendicular to a permeable plane directed along the
x-axis. This 15 an example of a plane potential flow which
arrives from the entire space earliar the plate and impinges
on a flat wall placed at y = 0, divides into two streams on
the wall and leaves in both directions. Here (u, v) are the
components of velocity at any point (x, y) for the viscous
flow whereas (U, V) are the velocity components for the
potential flow. A umform meagnetic field B, 1s applied
normal to the plane.

Then for the two-dimensional steady state flow, the
continuity and momentum equations, using the usual
boundary layer approximations (Olkedoye and Bello, 2008)
and by introducing Lorentz force, reduce to:

du v

—4+==0 (1)
x  dy
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ax ay dx ay p

The boundary conditions for the velocity problem,
assuming the absence of magnetic field in the potential
flow region are given by:

y=0:u(x,0)=cx,v(x,0)=0
y —»ooiu(x,0)=U(x)=bx 3)

v(x,0)=v(x)=—ax
The temperature distribution can be found from the

energy equation which may be written as (neglecting the
dissipation):
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Following Arunachalam and Rajappa (1978) and
Chaim (1998) the thermal conductivity k' is taken of form
as glver

k'= kl
T

@

The boundary conditions
problem are given by:

T(x0)=T,, T(x©)=T,

for the temperature
(3)

Also, the reactant concentration distribution

equation can be written as:

ac  ac &C  Dmk, 8°T
plu—+v— |=Dm—+ T—-A(C-C,)
& ady o Tm &y
(6)
Where:
C = The concentration of the chemical species

Dm = Mass diffusion coefticient at constant pressure
Ay = The chemical reactant parameter of the fluid

The boundary conditions for the reactant problem are

given by:
C(x,0)=C,, C(x,0)=C, (7
MATERIALS AND METHODS

Method of solution: By mtroducing the following
dimensionless variables and parameters:

n —\/gy,u(x,y) =oxf'(n). v(x,y)
= Joot(n), 0(n)=——To_ p(n)=

(T~ T.)’

c-c,
(C,-Ca)

The governing equations together with the boundary
conditions Eq. 1-7 reduced to:

flrr+f‘f‘ll+M2(7L_f')_f’2:O (8)
(1+€8)0"+ Pr(e8'+ £)8'+Prpe=-Dup" (9
0"+ Sc(¢'f — )= -Sr0" (10)
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Where:

A
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The flow Eq. 8-11 subject to boundary conditions
(11) are solved numerically using fimite differences. A
shooting technique 1s first applied to convert the
higher order derivatives to a system of first order
differential equations.

The solution for the non-magnetic case 1s chosen as
an initial guess and the iterations using Euler scheme are
continued till convergence within prescribed accuracy is
achieved with the corrections incorporated in subsequent
iterative steps until convergence which is used to obtain
the values of the initial guesses. Finally, the resulting
guesses together with the system was solved using
generalized Thomas’ algorithm.

The system of equations has to be solved m the
mfimte domain 0<n<n),. A fimte domain in the 1-direction
can be used mstead with 1 that the solutions are not
affected by imposing the asymptotic conditions at a
finite distance.

Grid-independence  studies  show  that the
computational domain 0<m=<7_ can be divided mto
intervals each of uniform step size which = 0.02. This
reduces the number of points between O0<n<r).. without
sacrificing accuracy. The value 1. = 10 was found to be
adequate for all the ranges of parameters studied here.

Skin friction, rate of heat and mass transfer
Skin-Friction: Researchers now study skin-friction from
velocity field. Tt is given by:

Table 1: Comparision of analvtical and numerical solution for M = 0.5 and 0.8
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T, d* du
C; = =—u(v.t), . tf=p—|, _
£ pu, v, dyz (y )‘Y—U B dy y=0
Which reduces to:

&
C=|—
6” =0

Nusselt number: In non-dimensional form, the rate of heat

Therefore:

transfer at the wall is computed from Fourier’s law and is
given by:

d dT
Nu=—— = "Ca(yt)|, . q,= K|,
(T, -T.)Kv, dy dy
Therefore:
do
Nu= (T])‘ -0
(dn) "

Sherwood number: The rate of mass transfer at the wall
which is the ratio of length scale to the diffusive
boundary layer thickness is given by:

I v d de
Sh=—""2—"=— t J,=-D—
(Cm—Cw)DVm dy¢(y’ )‘y=U> o] dy‘y=U
Which implies:
dé(n
-
n

The momentum Eq 7 has analytical solution
when M = 0. Researchers compare this results with the
numerical result for M = 0.5 and 0.8. Tt is observed from
Table 1 that the numerical and analytical values of
velocity ' (1)) are in good agreement as shown mn Table 1.
The comparison is satisfactory and this happens for other
Pr numbers. In contrast to the earliar numerical solution
presented, here the Prandtl number used 15 one
corresponding to the one for plasma (Pr=0.71).

M=0.5 M=08
N Analytical Numerical Difference Analytical Numerical Difference
0 1.000000 1.000000 0 1.000000 1.000000 0
1 0.326922 0.326921 0.000001 0.277864 0.277864 0
2 0.106878 0.106877 0.000001 0.077208 0.077208 0
3 0.034941 0.034938 0.000003 0.021453 0.021453 0
4 0.011423 0.011420 0.000003 0.005961 0.005961 0
5 0.003734 0.003730 0.000004 0.001656 0.001656 0
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Table 1: Continue

M=0.5 M=08
N Analytical Numerical Difference Analytical Numerical Difference
6 0.001221 0.001215 0.000006 0.000460 0.000460 0
7 0.000399 0.000392 0.000007 0.000128 0.000127 0
8 0.000130 0.000122 0.000008 0.000036 0.000035 0.000001
9 0.000043 0.000032 0.000011 0.000010 0.000008 0.000002
10 0.000014 0.000000 0.000014 0.000003 0.000000 0.000003

Special cases:In the absence of magnetic field, i.e., M =0
the results of the present paper are reduced to those
obtained by Pop et al. (2004) and Mahapatra and Gupta
(2002). Tn the absence of magnetic field, heat source/sink
and variable thermal conductivity, the results of the
present study are reduced to those obtained by Pop et al.
(2004) in the absence of radiation effect with constant
thermal conductivity and Mahapatra and Gupta (2002) in
absence of viscous dissipation and constant thermal
conductivity. In the absence of chemical reaction, the
result of the present study are reduced to those obtained
by Sharma and Singh (2009).

RESULTS AND DISCUSSION

Velocity, temperature and concentration distributions:
Figure 2 and 3 present the velocity profile f (1) and
concentration profile ¢ (1), respectively for varicus
values of A. Figure 2 and 3 show that increasing the
parameter A increases f' (1)) and reduces ¢ (1)). However
from Fig. 3, it could be deduce that increasing A reduces
concentration boundary layer at a point mn the flow field
reverse flow occurs which is indicated by the portion of
the curve in the negative vertical axis.

Figure 4 presents the temperature profile 6 (1) for
various values of A Figure 4 indicates that the
temperature boundary layer thickness decreases as
A increases. Tt is also clear from Fig. 4 that increasing

the ratio of stream velocity to stretching sheet
parameter decrease the velocity throughout the
boundary layer.

Figure 5 1s a graphical representation which depicts
the effect of magnetic field parameter M on the velocity
profile £, (). It is found that the effect of magnetic field
parameter M is to reduce the velocity, significantly in the
viscous flow; tlus 1s due to the fact that mcrease of M
signifies the increase of Lorentz force which opposes the
flow in the reverse direction. Increasing M decreases the
velocity boundary layer.

Figure 6 and 7 shows the concentration ¢ (1) and
temperature 0 (1)) profiles for various values of M. On
comparison of the curves, it is seen that concentration
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Fig. 3: Variation of ¢ (1) for various values of 4

increases 1 the flow region due to the application of
magnetic field. Here, increase of magnetic force causes
increase of concentration boundary layer thickness in the
flud flow (Fig. 6).

While, the temperature field reduces with an mncrease
in M for 0<n=4 beyond which it increases with an
increase in M.

The effect of chemical reaction parameter on
concentration profile ¢ (1)) is shown in Fig. 8 Researchers
note that during destructive chemical reaction (¢<<0)
increase in chemical reaction parameter decrease the
concentration boundary layer, however the situation is
reversed during the occurrence of reverse flow (¢ (1)<0).



J. Modern Mathe. Stat., 7 (5-6): 63-71, 2013

oM

1.0 9

0.8 1

0.6

' m

0.4

S A

1.0

0.8 1

0.6

0.4 1

o)

0.2 1

0.0

Fig. 6: Variation of ¢ (1) for various values of M

In Fig. 9, it 1s clear that the effect of the ¢ on the thermal
boundary layer thickness 15 significant. Increasing o
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Fig. 9: Variation of 0 (1)) for various values of 4

decreases the thermal boundary layer thickness, also
researchers not that for destructive chemical reaction, the
maximum temperature 1s not on the surface but i the
body of the fluid, this is indicated by the presence of peak
in the cwves. Far away from the wall (n>3), the
temperature distribution is reversed and hence mcreasing
o mereases thermal boundary layer.
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Figure 10 and 11 shows variation of heat
generation/absorption with  concentration and
temperature distributions, respectively. Tt could be seen
that the fluid concentration reduces as heat generation
increases. Furthermore, the maximum concentration is the
concentration at the wall for thus combination of control
parameters. While in Fig. 11, the thermal boundary layer
Increase wit increase in heat generation, also the presence
of peaks in the curves signifies that maximum temperature
occur 1n the body of the fluid.

The effect of Dufour mumber on the concentration
and temperature fields 1s shown in Fig. 12 and 13,
respectively. Researchers observe that Dufour number
increases  both  concentration and temperature
distributions. The same thing is observed with Soret
number as shown m Fig. 14 and 15 But here,
concentration distribution decreases with an increase
m Soret number whereas thermal boundary layer
increases with increase in Soret number. Figure 16
and 17 18 plotted for the concentration and temperature
distribution, respectively for various Prandtl number, it is
an interesting note that there 1s a significant enhancement
in both cases.

1.0 7

Fig. 10: Variation of ¢ (1) for various values of

1.7 5
1.5+
1.3+

Fig. 11: Variation of 8 (1) for various values of B
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On comparison of the curves, it could be seen that
there would be an increase in both concentration and
temperature in the flow region for lower values of Prandtl
number which result in increase of concentration and
thermal boundary layer thickness as Prandtl number
decreases. In general for the case here, Pr<1 which means

[IY)]

XU

Fig. 14: Variation of ¢ (1) for various values of Sr
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Fig. 17: Variation of 8 (1)) for various values of Pr

the conduction effects exceeds viscous diffusion the
thermal boundary layer is thicker than the velocity
boundary layer.

The effect of presence of foreign chemical species 13
shown in Fig. 18 and 19, it is shown that concentration
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Fig. 19: Varation of 8 (1) for various values of Sc

distribution decreases as the density of the species,
thus expected to have the highest
concentration distribution followed by water vapour
and then hydrogen as depicted m Fig. 18. While
temperature distribution increases as Schmidt number
increases.

Ammonia 18

Skin-friction, rate of mass transfer and heat flux: The
non-dimensional skin friction (c;), rate of mass transfer in
terms of Sherwood number (Sh) and the heat flux in
terms of Nusselt number (Nu) are entered in Table 2 for
different values of Hartmann number (M) reaction
parameter () heat source/sink parameter () Dufour
number (Du) Soret number (Sr) Prandtl number (Pr) and
Schmidt number (Sc).

The effect of this parameters on the non-dimensional
skin friction (¢;) rate of mass transfer in terms of
Sherwood number (Sh) and the heat flux in terms of
Nusselt number (Nu) as shown in Table 2 and 3 is
self-evident.
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Table 2: Effect of various parameters on ' (0), ' (0) and &' (0)

A M o B Du Sr Pr Sc () 9' (O ' (O)
0.0 ] 0.1 -0.3 5 1 0.71 0.6 -1.118000 -2.70E-2 -0.370486
0.2 0.5 0.1 -0.3 5 1 0.71 0.6 -1.000470 -0.299578 -0.101500
0.5 0.5 0.1 -0.3 5 1 0.71 0.6 -0.711900 -0.419309 -3.38E-2
0.8 0.5 0.1 -0.3 5 1 0.71 0.6 -0.315410 -0.464700 -2.31E-2
1.5 0.5 0.1 -0.3 5 1 0.71 0.6 0.942791 -0.559220 -1.12E-2
2.0 0.5 0.1 -0.3 5 1 0.71 0.6 2.077725 -0.617970 -41.87E-3
0.2 0.0 0.1 -0.3 5 1 0.71 0.6 -0.918110 -1.86E-2 -0.377000
0.2 ] 0.1 -0.3 5 1 0.71 0.6 -1.000470 -2.70E-2 -0.370486
0.2 1.0 0.1 -0.3 5 1 0.71 0.6 -1.215620 -4.66E-2 -0.356060
0.2 2.0 0.1 -0.3 5 1 0.71 0.6 -1.842370 -8.61E-2 -0.329000
Table 3: Effect of various parameters on €' (0) and &' (0)
o 8 Dt Sr Pr Sc 2" (0) b’ (0)
2.0 0.3 5.0 1.0 0.710 0.60 0.844618 -0.600410
1.0 0.3 5.0 1.0 0.710 0.60 0.471631 -0.504030
0.0 0.3 5.0 1.0 0.710 0.60 2.13E-2 -0.383040
0.1 -0.3 5.0 1.0 0.710 0.60 -2.70E-2 -0.370486
0.4 -0.3 5.0 1.0 0.710 0.60 -1.40E-2 -0.414030
0.1 -1.5 5.0 1.0 0.710 0.60 -0.307420 -0.597290
0.1 -0.3 5.0 1.0 0.710 0.60 -2.70E-2 -0.370486
0.1 Q.0 5.0 1.0 0.710 0.60 0.111672 -0.245080
0.1 02 5.0 1.0 0.710 0.60 0.275211 -7.09E-2
0.1 04 5.0 1.0 0.710 0.60 0.785117 0.609847
0.1 -0.3 0.0 1.0 0.710 0.60 -0.678110 -0.897250
0.1 -0.3 0.5 1.0 0.710 0.60 -0.484990 -0.730300
0.1 -0.3 2.0 1.0 0.710 0.60 -0.224080 -0.519750
0.1 -0.3 5.0 1.0 0.710 0.60 -2.70E-2 -0.370486
0.1 -0.3 5.0 0.0 0.710 0.60 6.15E-3 -0.373200
0.1 -0.3 5.0 0.5 0.710 0.60 -2.09E-2 -0.370110
0.1 -0.3 5.0 1.0 0.710 0.60 -2.70E-2 -0.370486
0.1 -0.3 5.0 2.0 0.710 0.60 4.71E-2 -0.359770
0.1 -0.3 5.0 1.0 0.015 0.60 7.52E-2 -0.141340
0.1 -0.3 5.0 1.0 0.710 0.60 -2.70E-2 -0.370486
0.1 -0.3 5.0 1.0 7.000 0.60 -0.789900 -0.997490
0.1 -0.3 5.0 1.0 0.710 0.22 -0.185180 -0.292240
0.1 -0.3 5.0 1.0 0.710 0.60 -2.70E-2 -0.370486
0.1 -0.3 5.0 1.0 0.710 0.78 0.044913 -0.402350
CONCLUSION NOMENCLATURE
. . . k* = Variable thermal conductivity
From the earliar discussions, researchers can draw K = Uniform thermal conductivity
the following conclusion: u,v = Velocity components along x- and y-axis, respectively
C = Concentration of the fluid
Dm = Diffusion coefficient
¢+  Fluid velocity decreases due to increase in the T = Fluidtemperature
Hartmann number v = Fhid transverse velocity
. . . . U = Freestream velocity
¢ Fluid temperature increases due to increase in the €. = Free stream concentration
thermal conductivity parameter, the Hartmann ~— T. = Freestream temperature
: M = Hartmarnn munber
number or volumetric rate of heat source parameter _ . .
) = Heat generation coefficient
s  Rate of heat transfer at the sheet increases due to ¢, = Specific heat at constant pressure
increase in the Prandtl number or A while it decreases ¢, = Surface concentration
T, = Surface temperature

due to increase in the Hartmann number

The velocity boundary layer increases as viscousity
parameter increases

Axial velocity decreases with the increase of
viscosity parameter

The fluid temperature reduces as heat generation
Increases

70

Dimensionless group:

Gre = Mass Grashof number

Grt = Thermal Grashof number

Pr = Prandtl number

S¢ = Schmidt number

Greek letters:

8 = Non-dimensional fluid temperature

A = Ratio of firee stream velocity parameter to stretching sheet parameter
B = Heat source/sink coefficient
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B, = Coefficient of concentration expansion
B = Coefficient of themmal expansion
Subscripts:
w Condition on the wall
o Ambient condition
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