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Abstract: Canonical polynomials were used as basis functions in Lanczos-reduction method to obtain what we
call Lanczos-canonical reduction method. The scheme was implemented for the case N = 4 on elliptic convection
diffusion problem. The results were compared with that of Lanczos-Chebyshev and were found to be better.
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INTRODUCTION

Most schemes of problems of Partial Differential
Equation in Engineering, Science and Management are
difficult to solve analytically hence, we seek numerical
solution. Consider the equation (Mitchell and Wait, 1978):

Viu+ 2om, =0
u(w,zj=u(w,z)=0 (1)
u(w,z)=¢

This can be interpreted as a diffusion term Vu
together with convection by a flow with velocity 2o
parallel to the w-axis.

In recent years, part of the efforts of mathematicians
in the area of ordinary and partial differential equations
have been so much as to construct solutions of particular
differential equation but rather to develop efficient and
that are
classes of equations with the aid of computers
(Boyce and DiPrima, 1986).

The approximating properties of Chebyshev
polynomials attracted a lot of interest and rapid

accurate techniques suttable for treating

development in the 1930's as can be seen mn the
research of Courant and Hilbert (1931), Sommerfield (1935)
and Van der Pol (1935). Towards the middle of that
decade, Lanczos, a co-worker of Albert Emstein, studied
some application of interpolation and expansions in
Chebyshev polynomials to problems of Mathematical
Physics. He pointed out that the Fourier series expansion

in the solution of practical problems is limited by the fact
that the ntegrals giving the coefficients of the expansion
are in general not adapted to actual evaluation and so he
proposed alternative techmques. One of them 15 the so
called Tau method (TLanczos, 1938). This method moved
the domam of application of interpolation and
economization from sphere of analytic function to that of
approximating function (Onumanyi, 1981).

Firstly, Lanczos (1938) mtroduced an approximation
technique called the Tau method to solve differential
equations of simple form. Ortiz (1969) develop two
approaches to the Tau method by Lanczos (1938) to treat
more complex problems and the two methods are recursive
Tau and operational Tau. El-Daocu ef af. (1993) studied the
two methods of Ortiz (1969) and found that those
approaches are equivalent. Crisci and Russo (1983)
extended the recursive Tau method for certain linear
systems of ordinary differential equation’s and this
extension for the operational Tau method which 1s known
as a realization of the recursive one was first discussed by
Abadi (1988) and then by Liu and Pan (1999). Later, Ortiz
(1969) considered the subdivision of the interval of
integration and the Tau method 1s applied on each
subinterval then it 1s called step by step Tau. Onumany1
(1981) introduced a scheme on the boundary wvalue
problems with the Tau method.

Chen (1979, 1981) used a reduction method based on
the Lanczos Tau method by Fox (1962) as applied to
functional fitting and solution of ordinary differential
equation to solve self-equilibrating end load problems in
hollow cylinders. It 13, however evident that the accuracy
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of this numerical method is bounded by the error of
the reduction method. But, due to the elimination of
the in the
process of Chen (1981), it 15 not immediately obvious

T(y) parameters involved reduction
how an error estimate can be established.

In the development of the scheme, Odekunle
(1992) solved the boundary value problems with the
Lanczos-Chebyshev and Lanczos-Legendre method
which improved the result with little effort.

This research mvestigates the use of canonical
polynomial develop by Onumanyi (1981) on the boundary

value problems.
MATERIALS AND METHODS

The reduction method: According to Odekunle (1998),
1f we have an unknown function u (x, y) in two dimensions
say that satisfies the linear partial differential equation:

Lu(x,y)=n ing 2)
And the boundary condition:
Lu(x,y)=&(x,y) ong (3)

where 3 is the boundary enclosing the region 53
Researchers then approximate u(x, y) by a finite sum of
products using:

)= R(x)Q @

i=

u(xy)mu(xy)=

=

Lanczos t-method mvolves the replacement of
one of the two functions by an approximate
polynomial of the form:

P(x)=x (5)

And must be bounded by the lines x = +l

in the =x-direction. The problem is then slightly

perturbed to become:
Lu(x,y)=1,(y)Cy, (x)+ T, (¥)C,, (x)+m (6)
Subject to:
Lu(x,y)=&(xy), x = =*1 (N

where T,(y) and T,(y) are arbitrary and C,(x) is the jth order
canonical polynomial in the range x € (-1, 1), unlike in the

33

case of Odekunle (1992, 1998) where they are either
Chebyshev or Legendre polynomials. Equating the
powers of x n Eq. 6 and the boundary conditions, Eq. 7
give N+4 equations with N+4 unknown T,(y), T ¢v),
Qi3 )y Quly). The arbitrary functions are eliminated
to give a set of N ordinary differential equations m N-
unknowns Q%(y),..., Q" (y) where v 1s the order of the
resulted ordinary differential equations.

Definition: We say ()(x) is a canonical polynomial of
second order 1s defined by an operator L as:

d* d
—t+—+1
dx

L= &)

Researchers derive the basis Q(x) as (Onumanyi,
1981):

Q(x)=x'-iQ;(x)=J(i-1)Q(x) jz0
DERIVATION OF THE METHOD
We seek an approximation of the form:
N
u(xy) =28 (y)x ~U(xy) (10)
1=0
So that:
N .
Lu(xy)= Z[ J+2g (y)+(i+1)(i+2)g,, (y)}x‘
i=0
(11)
And by Eq. 6:
Lu(x,y)=1,(¥)Qu.(x)+ 7, (¥)Qu(x) 12)
Denoting:
M
Qu(x)=>1CMx —1=x<1 (13)
i=0
Then (Eq. 2, 3) becomes:
Lﬁ(x,y):Z[tl(y)Cle+1:2(y)CE'11}x1 (14)

Comparing the right hand sides of Eq. 11, 14 and get
an equation which 1s use to obtain four equations and the
last two equations are obtained from the conditions.

N g!(y)+

8isz (Y)

ng (y)+(i+1)(i+2) g
T (Y)Clri_lz - (Y)C;:l

(15)
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From which we obtain:

g (y)+ng(y)+ 1+ 1)(i+2)g,.(y)-

(Y)C“—f( y)cli =0

LWN=-2ZN=3 4,

A(y)-n(y)Cnn -

g(y)+2g(y)-n(y)cy=0

(v) “1)" g, (y)
)

(y)+..+gu(y)=0

T, (y)Ch, =0 (16)

+o+ 0

Where the last two equations of 16 are obtained from
the conditions:

u(-Ly)=u(lLy)=0 (17

Elimmating 1,(y) and 1,(y) from the four equations
gives N second order differential equations in N
unknowns gy) (i = 1, 2, .., N). Using the boundary
conditions:

(18)

Leads to N simultaneous algebraic equations m N
unknown x,(1=0,1, ..., N) are the collocation points of
Cy(x). This can be solved by any of the mathematical
software, 1.e., Matlab or scientific workplace.

Numerical example: Consider the equation (Mitchell and

Wait, 1978):

2 2
gu Gu, ., a_, (19)
oz ow’ ow
Subject to the following boundary conditions:
u(n,w} =0, [w < }
2
u{z,?} =0, {|z| = —J (20)

Valid 1s the region -7/2 <z, w < /2. The problem 1s first
mapped into an nterval occupying -1<x<1 by the
linear transformation, so that the problem becomes
that of solving:
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Viurm, =0, -1<x,y<1 (21)
Subject to:
u(l y)=0,(|y|<1)
u(x,—l):O,( X|S1), (22)

We shall illustrate the method above by solving
numerically the convention-diffusion equation for the
case N = 4 which is the smallest possible value of N.

In the following and subsequent appearance
elsewhere, the C, i=1, 2, ... N are constants of integration.
From Eq. 16, we obtain:

g (y)+mg (y)+28,(y)-61,=0
g.(y)+mg,(y)+6g,(y)+2r,=0
g:(y)+ngy(y)—7,+31,=0 (23)
g.(y)+mg,(y)-1,=0

g (y)-g.iy)rely) g (y)=0
g(y)tedy)re:(y)+te.ly)=0

Eliminating T,(y) and t,(y) from Eq. 22, we obtain the
system of differential equations.

g (y)+me(y)+28,(y) 68,(y)-6mg,(y)=0
g, (y)+mg, (y)+ 285 (v)+ 2mg, (y) + 68, (y)+
6'ng4(y)+6g4 (y)
)+ )=

(

(24)
0

8s(y)+me;(y) - 285 (v )+ 6g. (y)+ 6mg, ()
2g (y)+ 2mg, (y)+ 58, (v)+ 5ng, (v) + 68, (y)

0

Solving, we obtain:

g, (y)=—4.00009598C e "*"Cos0.41631y —
8.944275376C ¢ *'"*'Sin0.4163 1y +
8.944275372C,e " Cos0.41631y —
4.00009599C, e ¥78in0 41631y —

4.0000875C,e "™ Cos0.41631y +
8.944246626C & 1" Sin0.41631y —
8.944246628C, e 7" Cos0.41631y —
4.0000875C,e """ *'Sin0.41631y -
1.000000001C, " *#86167 _ ¢ g @410 | 00y C g™

(25)
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Table 1: Approximate solutions to the convection-diffusion problem with ¢ = 1 using Lanczos-Canonical and Lanczos-Chebyshev reduction method

whenN =4

X ¥ Lanczos-Canonical Error in Lanczos-Canonical ~ Lanczos-Chebyshev  Error in Lanczos-Chebyshev Exact

0.0 0.5 1.828415138 0.007702629 1.875517293 0.054804486 1.820712509
0.5 0.5 1.394111717 0.083415453 1.496333013 0.185636449 1.3106962064
0.0 0.0 1.311279518 0.001324030 1.273844293 0.036106195 1.309950488
0.5 0.0 1.000614078 0.069918523 1.041980112 0.111284457 0.930695555
0.0 -0.5 0.832351921 0.022707448 0.815571039 0.039488630 0.855059669
0.5 -0.5 0.666532913 0.061104476 0.683371597 0.077943160 0.605428437

g,(y)=1.999822144C,e” " Cos0.41631y -
26.83291766C ¢ 8in0. 4163 1y +
26.83291768C ¢ ' Cos0.41631y +
1.999822124C ¢ ™" Sin0.41631y —
1.999509585C e """ Cos0.4163 1y —
26.83419658C e """ 8in0.41631y —
26.83419658C,e " Cos0.4163 1y +
1.999509584C e " **Y5in0.4163 1y —
2.000000001C, " *##8261167 .
1.999999995C & *#HY L C_ 4 Ce™™

(26)

g, (y)=-3.999952018C e " Cos0.41631y —
4.47213769C 67" Cos0.4163 1y +
4.472137686C,e " ""*Sin0.41631y —
3.999952016C,e**7Sin0.41631y —
3.999956252C e Cos0.41631y +
4.47212331C,e """ Cos0.41631y —
4.472123312Ce"**78in0.41631y —
3.999956252C,¢ " *"8in0.4163 1y +

—0.5428264 16 —3.68441907
Cie T+Ce Y

27

g,(y)=Ce”? " Cos0.41631y +
C,e1™8in0.41631y + Cg "0
Cos0.41631y + C,e """*¥Sin0.4163 1y

(28)

RESULTS AND DISCUSSION

For N = 4 in Table 1, shows the results obtained by
using the new method to solve the problem. Tt can be
observed by comparing columns tlree and four in
Table 1 that result obtained by this new method is better
than the Lanczos-Chebyshev.

CONCLUSION
Although, the study was linited to convection

diffusion equation, it can also be expanded to partial
differential equations of higher order, since the accuracy
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as compared with the result of Odelkunle (1992) has been
displayed and proved successful mn the convection
diffusion equation.

Inview of the economical use of the trial functions in
the Lanczos-Canonical method, the extension to time
dependent, boundary layer effect and non-linear problems
is worth knowing,.
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