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Abstract: This study 1s concerned to check the validity of a five parameter viscoelastic model for longitudinal
wave propagating in the non-homogeneous viscoelastic rods. In this study, it 1s assumed that density (p),
rigidity (G) and viscosity (1) of the specimen, ie., rod are space dependent and obey the laws p=p,e™*,
G=Ge™ and n=n,e" . The method of non-linear partial differential equation (Eikonal equation) has been used

for finding the dispersion equation of longitudmnal waves.
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INTRODUCTION

The viscoelasticity theory 15 used n the field of solid
mechanics, seismology, exploration geophysics, acoustics
and engineering. The solutions of many problems
related with wave-propagation for homogeneous media
are available 1n many literatures of continuum
mechanics of solids. However in the recent years, the
interest has arisen to solve the problems connected with
non-homogeneous bodies. These problems are useful to
understand the properties of polymeric matenals and
industrial related applications.

Modeling and model parameter estimation is of great
unportance for a comrect prediction of the foundation
behavior. Many researchers Alfrey (1944), Barberan and
Herrera (1966), Achenbach and Reddy (1967),
Bhattacharya and Sengupta (1978) and Acharya et al.
(2008) formulated and developed thus theory. Further, Bert
and Egle (1969), Abd-Alla and Ahmed (1996) and Batra
(1998) successfully applied this theory to wave
propagation in homogeneous, elastic media. Murayama
and Shibata (1961) and Schiffman ef al (1964) have
proposed higher order viscoelastic models of five and
seven parameters to represent the soil behavior. Recently,
Kakar et al. (2012) and Kaur et of. (2012) analyzed various
viscoelastic models under dynamic loading.

In most of the literature, the problems of
non-homogeneity are taken as independent of space
coordinate. But in this study, researchers consider the
wave propagation in non-homogeneous media when
density (p), rigidity (3) and viscosity (1) of the material
are space dependent such that the wave velocity is also
space dependent. The problem is solved with Eikonal

equation when the wave equation is approximated using
WKB theory. The displacements assumed in the problem
are so small that under 1sothermal conditions, the linear
constitutive laws hold. The displacement and stress
expressions are solved for time dependent displacement
and stress boundary conditions.

METHODOLOGY

Formulation of problem: Researchers consider the five
parameter model with three springs 3,(G)), S,(G;), S'(G',)
and two dash-pots D', and D, with viscoelasticity 1, and
M, respectively (Fig. 1). Tt has 3 sections, section 1
contains one spring 3,(3;), section 2 contains three
elements two springs S,(G,), S$',(G',) and one dash-pots
D,(n',) where S',(G';) spring and dash-pot D,(1';) are in
series forming Maxwell Model. The spring S,(G,) is
parallel to the Maxwell element. The section 3 contains
one dash pot Dy(1;). The springs represent recoverable
elastic response and dash pot represents elements in the
structure giving rise to viscous drag. For section 1:

e=e +e,+e, (1)
g=Gg (2)
For section 2:
e=e, +e, 3
o=0,+0, &)
g, = G,e &)
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Fig. 1: Five parameter viscoelastic model

o, =Ge, (6)
o, =Nn,e, (7)

From Eq. 4 and 5:
g,=c-0,e, (8)

Taking derivative on both sides of Eq. 3 and using
Eq. 6-8, researchers get:

[l+<}g]éz+%-<f ° ©)
G n, G) on,
For section 3:

G =n,8, (10)

Therefore, the behavior of viscoelastic materals
regarding to this five parameter model 1s given by Eq. 2,9
and 10. Where 0 13 the normal stress and e is the
corresponding overall normal strain of the five
parameter model, e,-e; are the normal strains associated
with the Maxwell spring, the three parameter model
and the Maxwell dashpot, respectively. Also G, = 4,+2u,,
G, = A,42p,, G, = M A2, are the modulli of elasticity
associated with Maxwell and three parameter element,
respectively and m';, m; are Newtonian viscosities
coefficients are all taken as functions of x m the
non-homogeneous case considered here. Elimmating e;-e,
from Eq. 2, 9 and 10, researchers get:

xS L (8
Gl GZ GZ nE
G

G+ —2 G{l-&-i}:ﬁ-—ze
n'2n3 G'Z n'Z
(1)
or;
P(D)o=Q(D)e (11a)
where;
P(D)=3,D° +3 D +35, (11b)
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Q(D)=yD*+yD (11¢)
5, = U (11d)
UPLE
Blii 1+& JrL JrGiz (116)
M, G, n', G,
52L{1+G2}+L (10
G\ G,) @G,
=S (11g)
N
y, =1+ 52 (11h)
G,
The equation of motion is:
2
%o _,oU (12)
ox ot
_au (13)
&%

Where, p = p (x) 15 the variable density of the
material. Using Eq. 12 and 13, Eq. 11 leads to:

8,6, +0,0, + 8,0,
1
= E{Yzcm -1, (logp), .. + 7,0, — v (logp), 5, }

(14
METHOD OF SOLUTION

Researchers assume that the solution o = (x, t)

of Eq. 14 may be represented by the series
(Friedlander, 1947):
o(x.)= 3 A, (X)Eft-h(x)}: 4,20 (5
n=0
Where:
F',=F , (wheren=123.) (16)

and it is assumed that A ~0 for n<0. Researchers further
assume that the derivatives of o may be obtained by
term-wise differentiation of Eq. 15, the prime in Eq. 16
denotes differentiation with respect to the argument
concerned and by using Eq. 16, researchers relate all F' s
to F; by successive integrations.
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The solution of Eq. 14 in the form of Eq. 15 can
be obtained by taking a phase function h(x), h(x)
satisfies the FEikonal equation of geometrical optics
(Karl and Keller, 1959):

[dh(x)j _p_1
dx G ¢

Where, ¢ = c(x) is the variable wave speed for elastic
longitudinal waves in a medium whose modulus of
elasticity is G.

Using Hq. 15, the successive derivatives of o (x, t)
w.rt tand x in Eq. 14, researchers get:

(17)

BA, + {24 b+ Ah) -
[BZAn YzAnh'z}Fn—E + p E1—2
P Y—z(logp) Anh'—LAnh'2
P : P
,BUAn +LA"n*~L2(10gP)X A!n,
_ P P F_ +
L2ar he A"+ D (logp) A
P P :
{%Ann'},l(log p)XA'n Fﬂ}
P P
(18)

To obtain the solution, i.e., to determine A’ s and
phase velocity function h(x), researchers take the
coefficient of F,_; = 0 where A,#0 and get the Eikonal
equation of geometrical optics as:

Using Eq. 14 and 15, the amplitude function satisfy
the equation:

= %(log p),x_h’(x)—

2h'(x)A (x)+ £ A(x)=%,;
Y A (x)+ he )

p P
(n=012,...)
(22)

Where:
X = A" - {(log p) + zlh}A'n_l—
b4 Yz

5
P e Dgogpyhia, + (2B
oY T

LA”n—Zi L(log p)xA'n—Z
Yz ¥a

Since, the wave 13 travelling along x-axis; therefore
integrating Eq. 17, researchers get:

s (24)
0 ©(5)

Where the plus (+) sign is associated with wave
traveling in the positive direction of x and the minus
(-) sign 1s associated with the waves travelling in the
negative direction of x. Solution of Eq. 22 can be obtained
as:

Y202 7
6 772h| =0 (19) 1 2 X
Y p A (x) =A (0){1&3 exp{?!m(s)ds} +
1
1 G 1 x 7 z
— | T+ =2 |+ 1 1(x)|? +
:hlz :62_[3: , Gl{ GFZJ Gﬁz E!C(S){I(—S)} eXp i’}[m(z)dz Xn (S)dS
¥ G
: 1+ G.zz (20) (n=012..)
- (25)
_ G,(G,+G") _P Where:
G, +G,+G', G I{(x)=pec
And:
Where: oo 8, 7, 1
G,(G,+G,) m(x)="") Lo
=_1\"2 "2/ 2ly, v pcz
G, +G,+d,
From Fa. 17 and 20. researchers set: Let, an impulse of magnitude o, suddenly applied at
& ’ ge the end x = 0 of the rod and thereafter steadily maintammed
. P 1 o1 that 1s:
h G () 21 a(0,t) = a,H(t) (26)
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From Eq. 15 and 26, researchers have:

iAn (0)E {t-h(0)} = o, H(t) 270

n=0

Thus, researchers choose (Moodie, 1973):

(s} .........ifn=0
A (0)=" (28)
n() Qeverenifn<0 orn=0
h(0)=0 and F,=H) (29)

The solution of Eq. 14, for the waves travelling in the
positive direction of x 1s generated by boundary stress,
therefore He. 26 becomes:

G(x,t):ZAn(x) H tfh(x)
n=0 n! (30)
I (e G A
—Z;An X H t—!@
Where:
% ds
— = 3
h(x) Vs

Where, A, (x) are given recursively by Eq. 25 (with
upper sighs) in conjunction with Eq. 28. The first-term
approximation leads to Eq. 30 as:

dm»%ﬁgym%%@@p%@E%

(32)

Equation 32 represents a transient stress wave which
starts from the end x = 0 with amplitude 0, and moves in
the positive direction of x with velocity ¢(x). Hence, it is

modulated by the factor:

(it

Further, terms in the approximate solution may be
obtained recursively from Eq. 25. The solution of Eq. 32
applies until the wave moving in the positive direction of
x strikes either an interface (in the case of a composite
rod) or at end (in the case of a finite rod). Researchers will
show that reflected waves are produced at the other end
of the finite rod while both reflected and transmitted
waves are produced at an interface between two
dissimilar media.

VISCOELASTIC MODEL APPLIED TO
A PARTICULAR CASE

For the sake of concreteness and for studying the
qualitative effect of non-homogeneity on the longitudinal
wave propagation in non-homogeneous five parameter
viscoelastic rods, it 1s assumed that density (p),
rigidity (3) and viscosity (1) of the specimern, 1.e., rod are
space dependent and obey the laws:

p:pDeZU,lX’G:GDeZU,gX’T]:nDeZqu (34)
If:
o, = o, = &,.1.e, density > rigidity > viscosity (35)

Case 1: When ¢, = ¢, = ¢, then from Eq. 34, researchers
get:
p=pe™™ .G =Goe™ m=nge™ (36)

Therefore, from Eikonal equation of geometric optics:

2 o
dh) ) o™y 1L (37)
dx G e

2
1]
Gy (38)

Since, the exponential variation of modulus of rigidity
(G) and density (p) is similar, therefore sound speed is
constant, 1.e., non-homogeneous has no effect on speed
and phase of the wave 1s given h(x) = x/c;. S0, it becomes
the case of semi non-homogeneous medium (a medium
when characteristics are space dependent while the speed
1s independent of space variable). The amplitude function
A, (x) satisfies the equation:

2h'(x)A, (x)+ {pﬂsm —ah'(x)— T p? (x)}

Yoz Yoz
A (x)=Y,; (n=0,12...)
(39)
Where:
e e (i IS
nDB G 02 n 0z o1
vy = oo (40b)
M
G
YUZ =1+ (}ID2 (400)
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And:
YH—AKH—{G+21%h}A;1—{&§l—1&ah}

Yoz Yoz Yoz

An—l + h‘A"n—z_ ho“A Fn—2
02 Yoz
(40)

Where:

61 - GDZ

0 1
Mo2Mos

And solution of Eq. 39 is given as:
A (x) =A (O)exp{j%dx}exp{-ﬁ-jmnds} +
o 0
%jcn exp{j%dx}exp{*—jmndz}\f (s)ds
1] b:4

(n=012,...)
(41)

GDZJ
GDI _1 GUZ
G

2 j PNy
Gy

(42)

For this case, the value of first term approximation,
the stress function is given by:

s(xt)=0, {exp;i%dx}exp{imuds}H{th(x)}

0
(43)
Tt is modulated by the factor:

oz s

(44)
Case 2: ¢ >0,>0,, i.e., density>rigidity>viscosity then
from Eq. 34, researchers get:
_ Jogx _ 2oipx _ 205%
P=pe G =G =g

From Eikonal equation of geometric optics:

Zopx

2
dhE) ) P P Py e _ 1 (45)
dx G G, G, ¢

Here:
(46)

The amplitude function A (x) satisfies the equation:

ool &Sm - 20, h'(x) -
Yoz

2h'(x)A' (x)+ A (x)=Y"
o o ) e
YUZ
(n=0,12..)
(47)

Where:

Y, =Y, A" —{2a +2Kh} A" -
YUZ
KA",_,—2KaA',_,
And:

{&““%2%”E£5u+KwL2K%h}AH,+

(n=012...)

K = gXoa-e)s Yo
YUZ

And its solution 1s obtained as:
1
7 =
AH(X)AH(O){@} exp{jocldx}exp
1(0) )

H m(s)ds}%ic@){%}% p

0

(oot

(48)

For this case, the value of first term approximation,
the stress function is given by:

[t o)

G(X,t):

(49)
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Tt is modulated by the factor:
1(x)
1(0)

*  When the density, rigidity and viscosity all are equal
for the first material specimen, the sound speed 1s
constant, 1.e., non-homogeneous has no effect on
speed and phase of the wave is given:

o |

]

CONCLUSION

So, it becomes the case of semi non-homogeneous
medium (a medium when characteristics are space
dependent while the speed is independent of space
variable). The longitudinal speed will be equal to:

*  When the density, rigidity and viscosity are not
equal for the second material specimen, the speed of
sound varies exponential as:

c= ﬂ e(U’Q_U'l)X
Pa
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