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Using Normalized BIC to Improve Box-Jenkins Model Building
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Abstract: The Box-Jenkins Model building approach 1s used to fit a statistical time series model to the chemical
viscosity reading data. The data were extracted from Box-Jenkins in called series D. The Normalized BIC was
explored to compare the fitted ARIMA (1, 1, 1) Model with both the AR (1) and IMA (1, 1) Models fitted
originally to the same series by Box-Jenkins in 1976. Among this class of significantly adequate set of ARTMA
(p, d, @) Models of the same data set, the ARIMA (1, 1, 1) Model was found as the most suitable
model with least BIC value of -2.366, MAPE of 2.424, RMSE of 0301 and R* of 0.749. Estimation by
Ljung-Box test with Q (18) = 9.746, 16 d.f and p-value of 0.880 showed no autocorrelation between residuals at
different lag times. Finally, a forecast for a lead time (1) of 12 was made.
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INTRODUCTION

The Box-Tenkins approach to modeling ARTMA
(p, d, q) processes 1s adopted in tlus research. The
original Box-Jenkins modeling procedure involved an
iterative three-stage process of model selection, parameter
estimation and model diagnostic checking. Recent
explanations of the process (Makridakis ef al., 1998) often
include a preliminary stage of data preparation and a final
stage of model application (or forecasting).

Although, originally designed for modeling time
series with ARIMA (p, d, q) processes, the underlying
strategy of Box-Jenkins is applicable to a wide variety of
statistical modeling situations. Tt provides a convement
framework which allows an analyst to think about the data
and to find an appropriate statistical model which can be
used to help answer relevant questions about the data.

ARIMA Models describe the current behaviour of
variables in terms of linear relationships with their past
values. These models are also called Box-Jenkins Models
on the basis of these researchers pioneering research
regarding time series forecasting techmques. An ARTMA
Model can be decomposed into two parts (Box et al.,
1994). First, 1t has an Integrated (I) component (d) which
represents the order of differencing to be performed on
the series to attain stationarity. The second component of
an ARTMA consists of an ARMA Model for the series
rendered stationary through differentiation. The ARMA
component is further decomposed into AR and MA
components (Pankratz, 1983). The Auto Regressive (AR)
components capture the correlation between the current
values of the time series and some of its past values. For
example, AR (1) means that the current observation is

correlated with its immediate past values at time t=1. The
Moving Average (MA) component represents the
duration of the influence of a random (unexplained)
shocks. For example, MA (1) means that a shock on the
value of the series at time t is correlated with the
shock at time t = 1. The autocorrelation functions (acf)
and partial autocorrelation functions (pact) are used to
estimate the values of p and q.

MATERIALS AND METHODS

The Box-Jenkins methodology, researchers adopted
for this research is widely regarded to be most
efficient forecasting technique and 1s used extensively.
It involves the following steps: Model identification,
model estimation, model diagnostic check and
forecasting (Box and Tenkins, 1976).

Model identification: The foremost step in the process of
modeling is to check for the stationarity of the time series
data. This 1s done by observing the graph of the data or
autocorrelation and the partial autocorrelation functions
(Makridakis ef al., 1998). Another way of checking for
stationarity is to fit the first order AR Model to the raw
data and test whether the coefficients ¢ 1s <1. The
task is to identify an appropriate sub-class of model
from the general ARIMA family:

o(Bly'x =6(B), 1y

t

which may be used to represent a given time series.
The approach will be:
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¢ To difference ¥, as many times as is needed to
produce stationarity

§(B),, = 0(B) 2)
Where:
® :(1—B)dxt =v'x, 3)

t

*  Toidentify the resulting ARIMA process

The principal tools for putting above points effect
will be the autocorrelation and the partial autocorrelation
functions. Non-stationary stochastic process is indicated
by the failure of the estimated autocorrelation functions
to die out rapidly to achieve stationarity, a certain degree
of differencing (d) is required The degree of differencing
(d), necessary to achieve stationarity is attained when the
autocorrelation functions of:

d
mt:V ){t (4)

die out fairly quickly. The autocorrelation function of an
AR (p) process tails off while its partial autocorrelation
function has a cut off after lag p. Conversely, the acf of a
MA (q) process has a cut off after lag q while its partial
autocorrelation function tails off. However, if both the acf
and pacf tail off, a mixed ARMA (p, q) process is
suggested. The act of a mixed ARMA (p, q) process 1s a
mixture of exponentials and damped sine waves after the
g-p lags. Conversely, the pacf of a mixed ARMA (p, q)
process 1s dominated by a mixture of exponentials and
damped sine waves after the first p-q lags.

Model estimation: Preliminary estimates of the parameters
are obtamed from the values of approprate
autocorrelation of the differenced series. These can be
used as starting values in the search for appropriate least
square estimates. In practice not all parameter in the

models are significant. The ratios:
Parameter (5)

1.96x SE

may suggest trying a model in which some of the
parameters are set to zero (Enders, 2003). Then,
researchers need to re-estimate the model after each
parameter 1s set to zero.

Diagnostic check: The diagnostic check 1s a procedure
that 1s used to check residuals. The residual should fulfill
the models assumption of being independent and
normally distributed. If these assumptions are not fulfilled
then another model 1s chosen for the series. Researchers

will use the Tjung-Box test statistic for testing the
independency of the residuals. Also, statistical inferences
of the parameters and the goodness of fit of estimated
statistical models will be made.

Ljung-Box statistics: Ijung and Box (1978) statistic tests
whether a group of autocorrelations of a time series are
<0, the test statistic 1s given as:

3 2

_ T 6
Q—T(T+2)k:1T_K (6)
Where:
T = Number of observations
s = Length of coefficients to test autocorrelation
1, = Autocorrelation coefficient (for lag k)

The hypothesis of Ljung-Box test are:

H,: Residual is white noise
H,: Residual is not white noise

If the sample value of Q exceeds the critical value of
a '’ distribution with s degrees of freedom then at least
one value of r is statistically different from zero at the
specified significance level

Normalized Bayesian Information Criterion (BIC): In
statistics, the Bayesian Information Criterion (BIC) or
Schwarz criterion (also SBC, SBIC) is a criterion for model
selection among a finite set of models. It 1s based in part
on the likelihood function and it is closely related to
Alkaike Information Criterion (AIC).

When fitting models, it 1s possible to increase the
likehood by adding parameters but doing so may result in
over fitting. The BIC resolves this problem by introducing
a penalty term for the number of parameters in the model.
The penalty term 18 large in BIC than in AIC.

The BIC was developed by Schwarz (1978) who gave
a Bayesian argument for adopting it. Tt is closely related
to the Akaike Information Criterion (AIC). In fact, Akaike
was 50 inpressed with Schwarz’s Bayesian formalism that
he developed his own Bayesian formalism, now often
referred to as the ABIC for a Bayesian information
criterion or more casually Akaike’s Bayesian information
criterion (Akaike, 1977).

The BIC 13 an asymptotic result derived under the
assumptions that the data distribution is in the
exponential family. Let:

x: The observed data
n: The number of data points in x, the numbers of
observations or equivalently the sample size
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k: The numbers of free parameters to be estimated.
If the estimated model 1s a linear regression k 1s
the number of regressors including the intercept

p (x/k): The probability of the observed data given the
number of parameters or the likelithood of the
parameters given the dataset

L: The maximized value of the likelihood functions
for the estimated model. The formula for the BIC
18!

—2Inp(x|k)=BIC=-2InL+kIn(n] (7

with the assumption that the model errors or
disturbances are independent and 1dentically distributed
according to normal distribution and that the boundary
condition that the derivative of the log likelihood with
respect to the true variance 1s zero, this becomes (up to an
additive constant which depends only on n and not on
the model; Priestley, 1981):

BICZH.IH(&2)+ kin(n) (8)

2

where, 62 18 the error variance. The error variance in

this case 1s defined as:
61-23(x-%) ©)

One may pomnt out from probability theory that
&2 is a biased estimator for the true variance, o”. Let &’
denote unbiased form of approximating the error
variance. It 13 defined as:

- Siew) (10)

n-1 i=1
Additionally, under the assumption of normality the
following version may be more tractable:

BIC=7%’+klIn(n) (1D

Note that there is a constant added that follows
from transition from log-likelihood to i, however in using
the BIC to determine the best model, the constant
becomes trivial.

Given any two estimated models, the model with
the lower value of BIC i1s the one to be preferred.
The BIC is an increasing function of ¢} and an
mncreasing function of k. That 1s unexplained variations in
the dependent variable and the number of explanatory
variables increase the value of BIC. Hence, lower BIC

implies either fewer explanatory variables, better fit or
both. The BIC generally penalizes free parameters
more strongly than does the Akaike information
criterion, though it depends on the size of n and
relative magnitude of n and k.

It is important to keep in mind that the BIC can
be used to compare estimated models only when the
of the dependent wvariable are
identical for all estimates bemng compared. The models
being compared need not be nested, unlike the case
when models are being compared using an F or
likelihood ratio test.

numerical values

Characteristic of the Bayesian information criterion:

¢+ Tt is independent of the prior or the prior is
vague (a constant)

» It can measure the efficiency of the parameterized
model in terms of predicting the data

¢ Tt penalizes the complexity of the model where
complexity refers to the number of parameters in
models

¢ Ttis approximately equal to the minimum description
length criterion but with negative sign

» It can be used to choose the number of clusters
according to the mirinsic complexity present in a
particular dataset

o Tt is closely related to other penalized likelihood
criteria such as RIC and the Akaike Information
Criterion (AIC)

Implications of the Bayesian information criterion: BIC
has been widely used for model identification in time
series and linear regression. It can, however be applied
quite widely to any set of maximum likelihood-based
models. However n many applications (for example,
selecting a black body or power law spectrum for an
astronomical source), BIC simply reduces to maximum
likelihood selection because the number of parameters 1s
equal for the models of interest.

RESULTS
Having discussed basic concepts and
theoretical foundation of time series that will enable us

analyze the data. Researchers now present a step by step
analysis of the dataset of series D.

s0me

Model identification: The graphical plot of the original
series of the chemical process viscosity reading: Every
hour is given in Fig. 1. Tt is observed that the series
exhibits non-stationary behaviour indicated by its growth.
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Fig. 1: Graph of original series X, (observed)

The sample autocorrelations of the original series
in Fig. 2 failed to die out quickly at high lags,
confirming the non-stationarity behaviour of the series
which equally suggests that transformation is required
to attain stationarity. Consequently, the
method of transformation was adopted and the first
difference (d = 1) of the series was made. The plot of the
stationary equivalent 1s given in Fig. 3 wlile the
plots  of  the partial
autocorrelation functions of the differenced series are
givenin Fig. 4 and 5, respectively.

The autocorrelation and partial autocorrelation
functions of the differenced series indicated no need for

difference

autocorrelation and

further differencing as they tend to be tailing off rapidly.
They also indicated no sign of seasonality since they do
not repeat themselves at lags that are multiples of the
number of periods per season.

Using Fig. 4 and 5, the differenced series will be
denoted by {w,} fort=1, 2, ..., 309 where, w,= v X Tt is
observed that both the autocorrelation and partial
autocorrelation functions of w®, are characterized by
correlations that alternate in sign and which tend to damp
out with increasng lag. Consequently, a mix
autoregressive moving average of order (1,1,1) was
proposed since both the autocorrelation and partial
autocorrelation functions of the w, seem to be tailing
off. Thus using Eq. 1, the proposed model is an
ARIMA (1,1, 1x

o(B)VX,=0(B)e, (12)

(lfd)f)mt:(lfef)et (13)
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Fig. 2: Plot of autocorrelation functions of the original
series

(167 )(X - X, ) ={1-67 e, a4

The plot of the autocorrelation and partial
autocorrelation functions of the residuals from the
tentatively identified ARIMA (1, 1, 1) Model are
given in Fig. 6.

Estimation of parameters: Having tentatively identified
what appears to be a suitable model, the next step is to
obtain the least squares estimates of the parameters of the
model. The SPSS 17 Expert Modeler was used to fit the
model to the data. The coefficient of both the AR and the
MA were not significantly different from zero with values
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Fig. 3: Graph of the differenced series D (-1)
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Fig. 4: Plot of the autocomrelation functions of the
differenced series

of 0.814 and 0.972, respectively. This model enables us to
write the model equation as:

X, =0814X,_ + 0972, +e, (15)

That 1s the AR coefficient ¢, was estimated to be
0.814 with standard error of 0.045 and a t-ratio of 18.024
while the MA coefficient 0, was estimated to be 0.972
with standard error of 0.020 and a t-ratio of 49.007.

For this model Q = 9.746. The 10 and 5% peints of ¢
with 16 degree of freedom are 2350 and 26.30,

1.04 Chemical viscosity
O Coefficient
- Upper confidence limit
0.54 — Lower confidence limit
e
8
E
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-1.04
T T T T T T T T T T T T T T T T
1 234 56 78 9101112131415 16

Lag number

Fig. 5: Plot of the partial autocorrelation functions of the
differenced series

respectively. Therefore, since Q is not unduly large and
the evidence does not contradict the hypothesis of white
noise behaviour in the residuals, the model 13 very
adequate and significantly appropriate.

Model diagnostic check: Tt is concerned with testing the
goodness of fit of the model. From plots of the residual
act and pacf, it can be seen that all points are randomly
distributed and it can be concluded that there is an
irregular pattern which means that the model is adequate.
Also, the mdividual residual autocorrelations are very
small and are generally within significance bounds.
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Fig. 6 Autocorrelation and partial  autocorrelation

functions of the residuals

Also, the statistical +zvn significance of the model
was checked. Five criteria: The normalized Bayesian
Information Criterion (BIC), the R®, Root Mean Square
Error (RMSE), the Mean Absolute Percentage Error
(MAPE) and the Ljung-Box  statistic were used to
test for the adequacy and statistical appropriateness of
the model.

First, the Tjung-Box (Q) Statistic test was performed
using SP3S 17 Expert Modeler (Table 1 and 2), the
Ljung-Box statistic of the model 13 not sigmficantly
different from zero with a value of 9.746 for 16 d.f. and
associated p-value of 0.880, thus failing to reject the null
hypothesis of white noise. This indicates that the model
has adequately captured the correlation m the time series.
Moreover, the low value of RMSE indicates a good fit for
the model.

Also, the high value of the R’ and MAPE indicate a
perfect prediction over the mean.

Again, the model 1s adequate m the sense that the
plots of the residual act and pacf in Fig. 6 show a random
variation thus from the origin zero (0), the points below
and above are all uneven hence the model fitted 1s
adequate.

The adequacy and significant appropriateness of the
model was confirmed by exploring the normalized
Bayesian Information Criterion (BIC). In a class of
statistically significant ARTMA (p,d,q) Models fitted to
the series, the ARIMA (1, 1, 1) Model had the least
BIC value of -2.366.

Forecasting with the model: Forecasting based on the
fitted model was computed up to lead time of 12 and the
one-step forecasting and the 95% confidence limits are
displayed in Table 3.

Table 1: Model parameters

Coefficients Estimates SE t-radio Sig.
AR Lagl 0.814 0.045 18.024 0.000
Difference 1 - - -

MA Lagl 0.972 0.020 49.007 0.000
Table 2: Model statistics

Model fit statistics Ljung-box Q (18)

R* RMSE MAPE BIC Statistics DF  8ig.  No. of outliers
0.749 0.301 2424 2366 9.746 16  0.880 0

Table 3: One-step forecast of the ARIMA (1, 1, 1) Model

Lead time Forecast 959% lower limnit 95% upper limnit
1 912 2.00 10.02
2 8.65 8.02 9.63
3 10.14 2.86 10.84
4 12.02 10.63 12.46
5 938 8.86 10.41
& 9.02 802 9.65
7 8.86 8.02 Q.85
8 7.80 7.04 8.06
9 10.81 9.84 11.00
10 916 2.03 10.06
11 8.28 7.89 9.40
12 10.02 9.88 10.64
DISCUSSION

The sample acf and pact of the original series
(series D) were computed using the SPSS 17 Expert
Modeler and their graphs were plotted. These were used
in 1dentifying the appropriate model. The series exhibited
non-stationary behaviowr following the inability of the
sample acf of the series to die the rapidly even at high
lags. The series was transformed by differencing once
and stationarity was attamed. The plot of the
differenced series indicated that the series 13 evenly
distributed around the mean.

Following the distribution of the acf and pacf of
the differenced series an ARIMA (1, 1, 1) Model
given by X,=0.814X, +0.972¢ ,+e, was identified. The
parameters of the fitted model were estimated. The
model was then subjected to statistical diagnostic
check using the Ljung-Box test statistic and the
normalized Bayesian Information Criterion (BIC).
Analysis  proved that the model is statistically
significant, appropriate and adequate.

The fitted model was used to forecast values of the
chemical viscosity readings for a lead time (1) of 12. The
forecast 1s a good representation of the original data
which neither decreases nor increases.

The fitted Model (ARIMA (1, 1, 1)) was compared
with the two original models fitted to the same series by
Box and Jenkins (1976). That 1s AR (1) Model given by:

z, =0.87z,_, +a, (16)

and TMA (1, 1) Model given by:
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Vz, =-0.06a,_ +a, (17)

were fitted to the series D data. The normalized
Bayesian information criterion was used in comparing
these three models. That is AR (1):

z, =0.87z_, +a, (18)
IMA (1, 1)
Vz, =-0.06a,_, +a, (19)

and ARIMA (1,1, 1:
X, =0.814X, , + 0.972e, , +e, (20)

Analysis showed that the ARIMA (1, 1, 1)
Model is superior to the two other models having the
least BIC value.

CONCLUSION

The ARTMA (1, 1, 1) Model fitted to the chemical
viscosity data 1s a better model than both the AR (1) and
IMA (1, 1) Models fitted originally to the same series by
Box-Jenkins in 1976. This showed that the Box-Jenkins
Model Building Approach needs modification which
this research has presented.
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