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Ruin Probabilities of Double Compound Poisson Risk Model under
Proportional Reinsurance and Interest Force
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Abstract: The researchers introduced interest force and reduced the risk of the insurance company with the
proportional reinsurance under double compound Poisson risk model. Differential-Integral equations of ruin
probabilities in finite and infimite time were provided. These conclusions have theoretical significance for the

INSUrance company measuring ruin risk.
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INTRODUCTION

The heart of risk theory 1s ruin theory. Undoubtedly,
study on rumn probability 15 very sigmficant. It has
directive function for insurance company considering
financial prewarning system and insurance regulators
designing certain monitoring index system. Mathematical
risk guidance (Gerber et al., 1997) written by Hans U
Gerber has been a mathematical c¢lassic studying ruin
theory (Shixue, 2002). Researchers introduced interest
rates to the classical risk model (Na and Mingqging,
2008). Researchers
probability caused by proportional reinsurance factors
(Kelin et al., 2011). Researchers introduced mnterest force
and reinsurance factors on the basis of  double
compound Poisson risk model (Baoliang et al., 2006).

considered effects on survival

Therefore, researchers established an entirely new risk
model and studied ruin probability of the new model.

ESTABLISHMENT OF THE MODEL

Definition: Suppose (£, F, P) is a complete probability
space. All stochastic processes and stochastic variables
in this study are defined in (€2, F, P). Define the surplus of
the insurance company at t is:
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* u is the mmtial capital of the insurance company.
c(0<g<1) 18 proportional reinsurance level of
insurance company. Consequently, the amount of
claims the reinsurance company paying is (1-c.)Y;
¢ Interest force 8 is a constant, =0

*  N|(t)a poisson process with parameter A, the number
of policies, the insurance company getting from 0-t.
N,(t), a poisson process with parameter A,, represent
the number of claims of the insurance company

s X represents the premiums the insurance company
recewing for the ith time. X = {X;,1=1,2,3..} isa
random variable sequence of mdependent i1dentical
distribution. The distribution function of X is F(x)
and F(0) =0

o oZFUx & gtand for total premium income at t. S
represents the time the insurance company receiving
premium for the ith time

» Y, represents the amount of the clain for the
ith time. Y={Y,1=1,2 3.} is a random varable
sequence of independent identical distribution. The
distribution function of Y, is G(x) and G(0) = 0.
aZE Ve stand for total claim at t. T, represents the
claim time for the ith time

o X=4X,1=1,2,3.3,Y={Y,1=1,2,3.}, 5, T,N,=
N, (rt20} and N, = {N(t):t=0} are mutually
independent

Definition: Define the ruin time T, = inf{t, t=0, U(t)<0}.
The ruin probability m the final with mitial surplus u 1s
Y.(u). So, the survival probability m the final i1s
05 (u)=1-v;(u) = The ruin probability with initial surplus u
before t is Wy(u, t). So, the survival probability before t is
D (ut) = 1-P,(u, t). Where:

Wy ()= PriT <o} = Pri_J(U,(t) < 0}

t=0

DIFFERENTIAL-INTEGRAL EQUATION
OF RUIN PROBABILITY

Theorem 1: The survival probability of moedel (1) in
infinite time satisfies the differential-integral equation:
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Therefore, the ruin probability of model (1) in infimte
time satisfies the following differential-integral equation:

Ayt
ud

Y A
-T2 [0 -y () 1 Glw)

Wi(u) =

L (1)~ %J.;‘Ps(u + x)dF(x ) o

The survival probability of model (1) in finite time t
satisfies the following differential-integral equation:

APy (u,t) s oD, (1,1)
ot dJu

=0 [ @s 0+ xOAF(x) + 1, [ 0,0 -y, 4G ()

(A + A XD (0, t)

Therefore, the ruin probability of model (1) in fimte
time t satisfies the following differential-integral equation:

Summarizing the above situations, it can be obtain:
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Proof: Consider the following four kinds of situations in
fully small time interval {0, At):

»  In (0, At), N, and N, have no jump. In other words,
claim does not happen in and the number of the
lnsurance comparny receiving premium 1s 0 in (0, At).
The probability of the situation is (1-A, At)(1-A, At) +
O(AD)

¢ TIn (0, At), N, has one jump and N, has no jump. In
other words, claim does not happen in and the
number of the insurance company receiving
premium 1s 1 1in (0, At). The probability of the
situation is A, At(1-A, At) + O(At)

» In (0, At), N, has no jump and N, has one jump. In
other words, the number of claim is 1 and the number
of the msurance company receiving premium 1s 0
in (0, At). The probability of the situation is
A At(1-A, At) + O(AL)

s TIn (0, At), N,(N,) has either two jump at least or they
have jump at the same time. The probability of the
situation is O (At)

@&, (1) =[(1 - LAD(1 = A, AL+ OAD]D, (ue™ ) +[h,At(l - A,AL) + O(At)]_[: @, (ue™ + ox)dF (x)+

eBat

(h

[, AL~ DAL + O(At)]_[n = P, (ue™ — oy )G (y) + O(AL)

Due to Taylor expansion, the researchers know that:

O, (ue™) = By(u+ ue™ —u) = By(u) + Dy(w)ue™ —ud+ 0(AL)

Substituting the Eq. 4 gives:

P, (1) = [(1— X AN — A, AL + OAD] [P, (u)+ Py uiue®™ —u)+ 0(At)] + [A, A1 =2 At) + 0(AL)]

j; Dy (ue™ + o )dF (x) + [h,At(1— K, At) + O(At)]j

ue®at
o

@, (ue™ — oy)dG (v)+ O(AL)

0

Using At dividing both sides of the above equation, the researchers obtain:

@, (u)ue™ —u)

(A + 2005 (1) - A ALD () = At

— (D + 2, D5 (W) ue™ — )+ A A AtD, (0)(ue™ —u)+ A, (1-h,At)

et

j: D, (ue™ + ox)dF(x ) + A, (1- mt)jn o @y (ue™ — ay)dG(y) + O(A)
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Let At-0, therefore:

(h, + vy )P4 (1) = uBD, (1) — xj D, (u+ ox)dF(x +xj (1 — oy)dG (y)
Where:

®.(u )_ 7“2@( )_71 D, (u+ ox)dF(x —f O, (u - oy )dG(y) ©)

D5 () = -P'y(w) due to Dy(u)=1-P;(u). Applying @'s(u) = -¥';(u) to Eq. 5, the researchers obtain:

¥, ) =2 2[1 W,(u )]——j [1 -, (u + o) JdF(x j [1-¥; (u — o) ]AG(y)
Therefore:

L) = us}‘“{! W= j ¥, (u+ ox)dF(x 7j W, (u— ay)dG(y)——I dG(y)
Where:

¥, () =2 ua e >f—j W0+ ox)dF(x f—j W, (u - ay)dG(y) - 2[1 Gl

Therefore, the consequence of Eq. 2 1s right. And then researchers prove the sequence of Eq. 3.

D, (1, 1) =[{1 = R A1 — A, AL + O(A) D, (1™ t — ALY+ A, At(] - L, At) + D(AL)]- j: D (ue™ +ox, t — At)

UESM

dF(x)+ [AAt(l - X AL+ O(At)]jUT @, (ue™ — oy, t — ADAG(y) + 0(At) = D, (ue™, t— Aty — (&, +2,)

ALD (ue™ L — AL+ X 2 ACD, (0e™ 1 — AU+ [, AL(T— A,AL + O(AD)]- j; D, (ue™ + o, t — AdF(x) +

u ESM

[h AL — A AL+ O(At)]jUTch(ueBm — oy, t — ADAG(y) + O(AL) = D, (ue™ ,t —AtY— (b, + A, JALD,

(ue™ t —At)+ klAtI;cba(uem + o, t — ADAF(x) + sztjanaa(ueMt — oy, t —AUAG(Y) + O(At)

Using At dividing both sides of the above equation, the researchers obtain:

Ps(u,t)  Dy(ue™,t-At)
At At

= (O + )P, (U™t — At)+k_[ D, (ue™ +ax,t — AtAF(x) +

A, IDT D, (ue™ — oy, t — ALAG (y) + O(AD)

Therefore:

D, (u, 1) — D, (u,t — Al) . D (u, t — A — D, (ue™ 1 —AL)
At At

= (b, + 2, )Py (U™t — AD 4+ A, jﬂ“’ D, (ue™ + ox, t -~ ADAF(x) +

A, IDT @, (ue™ —aty,t — ADAG (y) + O(AD)
Let At-0, therefore:

0P, (u.t) s oD, (u,t)
ot du

+ 0+, D (U, ) = xj B, (u+ o, DAF(x +xj D, (u — oy, DAG(Y)

The researchers obtain 8®@s(u.t) __8¥;(u.t) and 8Pty __ ¥ (1) due to ®;(u.t)=1-"F (u.t),
ot ot du du

12
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Therefore:
0¥ (u,t) L us d¥,(u.t)
ot
Where:
s M (ut) IV (ut)

du ot

Oy + A=W 0,07 =2, [T =%, (u -+ oo, AF(x) +

Ay 21 - W, — ey, G (y)

= Oy + 0 Wt =, [T W, (u + 0, DAF(x) -

o o Wo 0 - oy, 04G(y) - A, [1- G
o oL

Therefore, the consequence of Eq. 3 is right.
CONCLUSION

In this research, the researchers considered interest
force on the basis of double compound Poisson Risk
Model. The researchers reduced the ruin risk of the
msurance company with the proportional remsurance.
Double compound Poisson Risk Model under
proportional reinsurance and interest force, a more
practical model was presented.

Finally the researchers derived the Differential-
Integral equation satisfied by the ruin probability of the
new model. Tt has theoretical significance for the
Imsurance company measuring ruin risk i complex
economic environment.
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