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Abstract: Distributional assumptions made in respect of the variables and parameters of single or multi-level
models often include those relating to the response or explanatory variables. Tt is anticipated that erronecus
and misleading conclusions could be drawn on the distribution of the response variable if differing multi-level
models predict the response variable values. This study explores, using educational data sets for illustrative
analysis, distributional consequences that could be ascribed to the response variable of a multi-level model if
the level of a model varies. It 1s shown how response variable population distribution parameter estimates can
vary with varying levels in the K-level Model and also how inferences on confidence interval limits of the
response variable can also be misleading in an inappropriate K-level Multi-level Modeling Framework.
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INTRODUCTION

In fixed or mixed effects single level models such as
Lmear Models, Generalized Linear Models, Incomplete
Block Designs and Split-plot Designs, assumptions or
specifications
distributions
These response variable distributional assumptions or
specifications often constitute the the
application of appropriate parameter estimation
techniques or valid statistical tests of significance.

There is an extensive wealth of literature discussing

are often given in respect of the

of the associated response variables.

basis for

the import and implications that emanate from response
variable distributional assumptions or specifications in
single level fixed effects models (Johnston and DiNardo,
1997, McCullagh and Nelder, 1989; Johnston, 1984;
Weisberg, 2005; Kariya and Kurata, 2004; Seber and Lee,
2003, Palta, 2003). In more complex mixed models such as
multi-level models that fit data known to emanate from
clearly recognizable hierarchically clustered populations,
it is known that inferential consequences on fixed and
random parameters can be radically altered on account of
the level describing the model (Goldstein, 2003). This
study distributional
consequences that could result m a multi-level model
following alterations m the level of the model. Two
differently conceptualized 4-level Models are explored and
1t 1s shown that higher level multi-level models adjudged
to be superior also gave response variable distribution

examines response variable
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parameter estimates that were different from estimates of
same response variable obtamable from seeming mferior
lower level models. This goes to show the extent to
which inferences on the sigmificance of the response
variable distribution parameters could be altered on
miss-specifying the level of a multi-level model.

MATERIALS AND METHODS

Data structure: The illustrative data employed to enable
exploration was drawn from an educational environment.
There were basically two data sets herein named
Datasets 1 and 2. The data are derived from 50 randomly
selected secondary schools in Benue State of Nigeria.
Dataset 1 constituted a 4-level data structure (and hence
a 4-level Model conceptualization) i which there were
9.999 level 1 urits (here students), 450 level 2 units (here
subjects or subject groups), 150 level 3 units (here
classes) and 50 level 4 units (here schools). The clustering
was such that for any original sample n, (20<n,<30) of the
students from each school j, the n, was replicated into
9 clusters giving rise to 9 n, level 1 units for school
1G=1,2, .., 50). In other words, the same n, students in
school j were mirrored in 9 clusters or groups and in
particular for each school j, researchers had 9 n, level 1
urits nested in 9 level 2 umts that were further nested
3 level 3 umits. Dataset 2 also constituted a 4-level data
structure but here there were 6,666 level 1 umts
(students), 300 level 2 units (subjects or subject groups),
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150 1level 3 units (classes) and 50 level 4 units (schools),
in this dataset, the seeming confounding characteristics
in Dataset 1 were reduced by removing the level 2 unit or
cluster relating to Common Entrance (CE) and variables
based on it.

Description of variables:

*  Navgstem; 1s the student’s fimal STM score; a level
1 response variable

¢ Ncescore; is the student’s entrance score; a level 1
predictor variable

¢ Normscore, 1s the JSS1 schocl STM score student’s
subject score per class; a level 1 predictor variable

*  Navglstem; 13 the fmal school STM score; a level 4
predictor variable

+  Navgce, is the school common entrance score; a level
4 predictor variable

*  Navg2Zstem, 13 the ISSCE school STM score ; a level
4 predictor variable

*  Navg3stem, 1s the final school STM score; a level 4
predictor variable

¢ Navgsub, is score per subject; a level 2 predictor
variable

* Navginels, 13 score in class; a level 3 predictor
variable

+  Schstatus, 15 the school status (i.e., whether school
18 owned as private or public); a categorical predictor
variable

*  Schsystem, is the school system; it 1s a categorical
level 4 predictor variable with the categorized mto
Boardsytem, Daysystem or Bothsystem

*  Schgender 1s school gender; it is categorical level 4
predictor variable with school gender categorized
into Boys school (Boysch), Girls school (Girlsch) or
Mixed (Mixedsch)

* Nmsqgindex, 1s the school staff quality mdex (an
mdication of academic staff quality or strength m any
particular school. This is estimated by dividing the
total number of qualified academic staff by the entire
estimated student population in the school; it 1s level
4 predictor variable

¢  PSStatus, is an indication of electric power supply
status in a school; it is a categorical level 4 predictor
variable with power supply categorized into school
generator, PHCN both or none

¢ Labav, is an indication of the availability of science
laboratories in a school; it is a categorical level 4
predictor variable lab available categorized into no
sclence lab, one science lab or two or more science
labs

¢ CONS is a constant used for dummy variables
and usually carries a value of one; it 15 a level 1
predictor
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The K-level Model: This may be expressed in the compact
form:
Y = Xy+ZU+7% 4}
Where, Y is a column vector of true unobservable
responses each assumed continuous:

7 =78, 7%0 . 7¥]
and:
U= [u¥ u®*" . u¥]

The Z¥s are block diagonal matrices having diagonal
elements as Zj(k) G =1, 2, ... m) while u®, X and vy are
column matrices with elements, respectively, u](k), X
(G=1,2, .., my) and y,,(h =0, 1, ..., p). Researchers assume
that Z"e and U are normally distributed with zero mean
and researchers, symbolically, write:

ZWe=r-N(0O,a I*) (2

3)

and:
U-N (O, T*)

Where, I* and T* are appropriate block diagonal
matrices comprising, respectively, the blocks of umt
matrices and blocks of variance-covariance matrices of the
residual vectors associated with the K-level Model (that

1s the residual contributions from the levels 2, 3, ...k m
the K-level Model).
Researchers mnfer from Eq. 1-3 that Y 1s

normally distributed with E (Y) = Xy and variance-
covariance matrix:

V, =V=E[EE'|=Y (V. )

where:
E=7U+7"

The notation V, here referring to the covariance (or
variance-covariance ) matrix associated with the response
vector for the K-level Model and Vi, (1 =1, 2, ., k),
respectively, denote the contributions to the covariance

matrix of the response vector from levels k, k-1, .., 1 mna
K-level Model.
The level 1 residuals are assumed to be

independent across level 1 units. Sunilarly, levels 2, 3, ...,
k residuals are assumed to be independent across levels
2, 3, ..., k units, respectively. Tt should be noted also that
V, 1s a block diagonal matrix with block diagonal
elements Vi, (1 = 1, 2, ., k) and each of these
elements is also block diagonal comprising blocks in
their composition.

Models investigated
Dataset 1 case: The 4-level Model considered 1s:
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Navgstem,, =f, + f;(Normscore — m(Subject)),, + P, (Ncescore —m(Subject}),, + B,(Navg3stem —gm), +
B, Daysystm, + B,Bothsystm, + B,Girlsch, + B.Mixedsch, + 5, (Normscore —
m{Subject).(Navgsub —m(Class),, + B, Normscore — m( Subject). Schstatus Ly +
B,,(Normscore — m(Subject).Psstatus _ 2,,, + (3, (Normscore —m{Subject) Psstatus 3, +

B, (Normscore — m{Subject).Psstatus _ 4, + B, (Nrsqindex — gm), + e,

f o)
= TN, Q= "
Bul = Bu +1y I 2=Ef £ 2
B 2l Stz Orz (4
Bl] *B1+u1]k1 i u ~N(0 Gz )
le = Bz + le e , 2uu
&, ~N(0, ;)

The levels 3, 2 and single level models are respectively given by Eq. 5-7 below:

Navgstem,, =, + B, (Normscore — m{Subject)),, + B,, (Ncescore —m{Subject)),, + B, (Navgincls —gm), +

B, (Normscore — m(Subject). (Navgsub —m(Class),, + e,

Vi NO.QY O = oy
Bax =By + vy ~N(0,L2,) £, = )
_ VZk GVUZ sz (5)
Bl] - Bl + ul]k ° 3
B =B +v uDJk~N(O,Gun)
2 P2 2k
¢ ~N(0,07)

Navgstemy, = ), + B,;(Normscore — m(Subject 1), + B,;(Ncescore —m(Subjecty),, +

B, (Navgsub — gm), + ey

BU] :Bu 1y, vBl] :B1 tu ’BZJ :Bz Uy

Uy o (6)
uy; ~N(0,;) £ =| 0, Guzu s eijNN(Osci)
u Sz Gz 012»2

2] ul2

Navgstern, =, + B, (Normscore —m(Subject )}, + B, (Ncescore —m(Subject )), + B, (Navg3stem —gm), +
B, Daysystm, + (. Bothsystm, + 3, Girlsch, + 3, Mixedsch, + [, (Normscore —
m(Subject).(Navgsub —m(Class), + B, (Normscore — m{Subject).Schstatus 1, + 3, ,(Normscore —
m(Subject) Psstatus 2, + B, (Normscore — m{Subject ). Psstatus 3, + 3, Normscore —

m(Subject).Psstatus 4, + B, (Nrsgindex —gm), + ¢,

e~N(0, o) (7
Dataset 2 case: The 4-level Model considered 1s:
Navgstemn,,, =B, + 3, (Normscore —m{Subject)),,, +B,(Nrsqindex — gm), + ,(Navg3stem — gm), + 3, Daysystm, +
B;Bothsystm, + [3,Schstatus 1, + e,
By =B, +1y 2 B =Bt viy
(8)

£,~N(0, 610, v,,~N(0, 63,)
&, ~N(0, al)
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The levels 3, 2 and single level models are
respectively given by Eq. 9-11 below:

Navgstem,, =, + f,,(Normscore — m(Subject)),, +

B, (Navgincls —gm), + 3, (Normscore —
m(Subject)). (Navgsub —m{Class);, +e;,

In this study, three variants of single level model
formulations are considered from each of the two data
sets to enable some msight into differing conclusions that
may result mrespect of the response variable distribution.
In the first varant (this being the only varant which
equations are explicitly depicted n this study), all
variables used m the k-level full structure are recast as

Bo. =B, + Vo, single level wvariables. In the second variant, the
B, =B +v 2-level is recast in a single level framework while the third
o variant simply removes from the 2-level Model all
, variables originally defined as belonging to 2 or higher
o
PuﬂmN(O, Q) Q _{ w0 2 } ©) levels.
Vi o1 On
e, ~N(0,5%) RESULTS AND DISCUSSION

Navgstem, =, + B,(Normscore —m(Subject)); +
B,(Navgsub — gm), +e,

To explore the distributional consequences of the
response variable as model levels vary, the K-level
Models mn each of Datasets 1 and 2 are estimated via

By, =By + 1y, Iterative Generalized Least Squares (IGLS) techmique
B. =B tu implemented in MLWiN package 2.20 and response

Y . variable values from each of the fitted models generated.
¢;~N(0, o.) (10} Datasets 1 and 2 shall generate 9,999 and 6,666 response

Navgstern, =3, + B, Normscore —m(Subject)), +

B, (Nrsgindex —gm}, + B,(Navg3stem —gm), +
B, Daysystin, + 5. Bothsystim, + B,Schstatus_ 1, + ¢,

e~N(0, o2)

(11
It should be noted that for each of the Datasets there
are of course, several alternative K-level Model
formulations for each k (k = 1-4) besides the ones reflected
above but the adopted ones here were affirmed (using
the MLWIN software) to have the least deviance and
generally retained the highest number of statistically

relevant predictor variables.

values, respectively for each K-level Model. The fitted
model deviance, population mean, standard deviation and
variance of the response variable are then estimated for
each K-level Model. From Table 1 and 2, the Asterisked
(*) Model designations denote the estimation results
assoclated with the second and third variants of the
Single Level Model formulations alluded to in the
preceding section.

Table 1 and 2 relating to Dataset 1 mdicated that
higher level models returned lower model deviances in
general (an indication of better model fit with increasing
model level) and where as the response variable exhibited
common mean response value (-0.000036), the response
variable variances (and hence standard deviations)
differed with differing model levels; tending towards 1 as

Table 1: Response variable mean and variance estimates for 9,999 response values
Response variable estimate

Models Levels Mean Variance SD Minimum Maximum Model deviance
2.4 4 -0.000036 04936 0.7026 -3.8692 3.3022 21940
2.5 3 -0.000036 04757 0.6897 -3.5929 3.0749 22761
2.6 2 -0.000036 0.4298 0.6556 -3.4350 2.9268 23856
2.7 1 -0.000036 03915 0.6257 -2.6789 2.0753 23404
2.7 1 -0.000036 01215 0.3485 -1.2748 1.1617 27077
2.7 1 -0.000036 0.0391 0.1977 -0.8018 0.9904 27974
Table 2: Response variable mean and variance values based on 9,999 collected
Raw values
Mean Variance SD Minimum Maximum
-3.6E-05 0.9997 0.9998 3.95 3.31
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Table 3: Response variable mean and variance estimates for 6,666 response values

Response variable estimate

Models Levels Mean Variance SD Minimum Maximum Muodel deviance
2.8 4 -0.00012 0.4803 0.6930 -3.3956 3.4906 14785
2.9 3 -0.00012 0.4667 0.6832 -3.3588 3.3938 15173
2.10 2 -0.00012 0.4425 0.6652 -3.2900 2.8113 15644
2.11 1 -0.00012 0.3733 0.6110 -2.2999 2.1704 15803
2.11 1 -0.00012 0.1814 0.4259 -1.7555 1.6744 17583
2.11 1 -0.00012 0.0766 0.2768 -1.2541 1.6379 18386

Table4: Response variable mean and variance values based on 6,666

collected
Raw values
Mean Variance SD Minimum Mastimum
-0.00012 1.0002 1.0001 -3.82 3.25

the model level increased. Thus as model level increases
the response had estimated distribution
parameters (namely mean and standard deviation) getting

variable

closer to those of the response values based on raw
collected data which has mean -0.000036 and standard
deviation 0.9998. The mterval limits of response variable
values also differed with differing model levels as the
model levels increased the interval limits increased
from (-0.8018, 0.9904) to (-3.8692, 3.3022). The mterval
limits of response variable values from the raw collected
data are (3.95, 3.31). That 1s increasing the model level
results in predicting response variable values that are
within a range that is very close to that obtainable in the
raw collected data.

Table 3 and 4 shows patterns that are similar to what
obtained n the preceding tabular values relating to
Dataset 1; models with higher levels yielded lower model
deviances and also the mean and variance distributional
parameters of the response variable better approximated
the actual raw collected data values as the model level
mcreased. The interval hmits of the response variable
values (as predicted by the models) increased with
mncreasing model level; getting closer to the raw collected
data response variable values interval limit of (-3.82, 3.25).
Thus as m the case of the tabular values of Dataset 1,
mcreasing the model level results in predicting response
variable values that are within a range much closer to that
obtainable in the raw collected data.

CONCLUSION

Tt is well documented in the multi-level modeling
literature that misleading inferences could be made on the
relevance or otherwise of predictor variables in formulated
linear models (and indeed on the adequacy or otherwise
of the entire model) when such models are erroneously
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cast as Single-level Models or in an inappropriate K-level
Model framework (Goldstein, 2003; Bryk and Randenbush,
1992, 2002, Hox, 1995). That model adequacy can be called
to question when a model is fit in an inappropriate K-level
framework malkes it plausible to examine possible
inferential differences that could result on the response
variable of a multi-level model if the model level is altered.
In the illustrative analysis employed, it 15 seen in the
hierarchically structured educational data explored that
Judging from model deviance values and increasing level
of the K-level Model mproved model adequacy. The
normal distribution assumption in respect of the response
variable (here called Navgstem) appears to have been
more closely met by the response variable wvalues
generated by the 3 and 4-level Models than what obtamed
in the lower level models. Single-level Model formulations
particularly generated response variable values that
largely formed only a sub-range of the large range of true
response variable values and the estimated distribution
population parameter variances, especially differed
significantly from what obtained in the 4-level Model or
raw collected data cases. Confidence interval mnference
investigations on the response variable could also yield
misleading answers (especially in respect of the response
variable standard deviation or variance) if the values of
the response variable are generated or simulated from an
1in appropriate K-level Model.

Tt is opined that if studies on the variability of the
response variable m a Hierarchical Linear Model are
consequential then care must be taken to ensure that the
multi-level model 1s cast m an appropriate K-level Model
framework.
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