Tournal of Modern Mathematics and Statistics 5 (4): 84-88, 2011

ISSN: 1994-5388
© Medwell Journals, 2011

Introduction to Secure PRNGs

Majid Babaei
Department of Computer Engineering,
Shahrood University of Technology, Shahrood, Iran

Abstract: Pseudo-Random Number Generators (PRNGs) are required for generating secret key in cryptographic
algorithm, generating sequence of packet in the network simulation (workload generators) and the other
applications in the various fields. In this study, there will be discussed a list of some requirements for
generating reliable random sequence and then will be presented some PRNGs method which are based on
combinational chaotic logistic map. In the final study after a brief introduction of two statistical test packets,
TestUO1 and NIST suite tests, the PRNG methods which are presented n this study will be appraised under

these test packets and the results will be reported.

Key words: Cryptography, chaotic random bit generator, NIST test suite, TestUO01, PRNGs, Iran

INTRODUCTION

Pseudo-random Number Generators (PRNGs) are
useful in many applications such as the crypto-system mn
network communication also one of the important
methods in simulation is Mont Carlo which needs to
generate very high quality pseudo-random sequence and
calculation of numerical integration which is not solved
by regular methods (Jun and Kocher, 1999, Wang et al.,
2006; Ergun and Ozoguz, 2007).

These days with the mention of values security
threats (Jun and Kocher, 1999, Wang et al., 2006;
Ergun and Ozoguz, 2007; Hu et al., 2009, Patidar et al.,
2009; Fechner and Osterloh, 2010; Shparlinski, 2004;
Wang, 2000; Kumar et al., 2010, Rahimov et af., 2010,
Babaei, 2011; Menezes et al., 1997, Fechner and Osterloh,
2010), the statistical quality of PRNGs 1s becoming more
important than in the past. For example, the super
computer might be generate 10° random mumbers per sec
and the cryptography algorithm needs 10" random
numbers to create a secure channel in the very important
communication, thus other
weaknesses in the generated sequence could easily lead

small correlation or
to the critical leak in the several network layers.
The distributions should be prepared based on their
commercial applications such as normal, exponential,
poisson and so on. But in this study, researchers consider
only the generation of umformly distributed numbers. In
more detailed will be focused on the real number sequence
which is uniformly distributed on the interval (0, 1).
The basic point in generating pseudo-random mumber
15 that these generators are deterministic because the
digital computers are not able to generate truly random

84

numbers. So, the statistical test needs to be presented and
the PRNGs should pass the number of important
statistical tests before being release for security usage in
the commumncation networks.

Overview: Generation random numbers by combinational
chaotic maps is one of the best methods to improve
statistical properties. For example, Wang et al. (2006)
proposed a pseudorandom number generator based on a
z-logistic map. Frgun and Ozoguz (2007) proposed that the
novel random bit sequence of a non-autonomous chaotic
electronic circuit. Then, Hu et al. (2009) proposed a true
random number generator by computer mouse movemernt.
Patidar et al. (2009) designed a random bit generator
based on two chaotic logistic maps which 1s generated by
comparing the outputs of the both chaotic logistic maps.
Recently, Fechner and Osterloh (2010) presented a
meta-level true random number generator.

Generating high quality PRNG: In many researches,
there have been discussed the requirements for a good
PRNG (Jun and Kocher, 1999; Wang et al., 2006;
Ergun and Ozoguz, 2007, Hu et al., 2009, Patidar et al.,
2009, Fechner and Osterloh, 2010, Shparlinska, 2004;
Wang, 2000; Kumar ef al., 2010; Ralumov et al., 2010;
Babaei, 2011; Menezes ef al., 1997; Fechner and Osterloh,
2010).

Uniformity of distribution: Uniformity of distribution 1s
the main concern in the statistical tests of random
sequences. It means that at any point in the generation of
a sequence of random or pseudo-random bits, the
occurrence of a 0 or 1 1s equally likely (Shparlinski, 2004).

J. Modern Mathe. Stat., 5 (4): 84-88, 2011

=

(AT A R
.‘“"o"l .
LIRS ol B3

0.87T+,
.

¥
0.6 RORAT
90 0%
.0.' LM '.. LRI
. ..n," 'Lt % DA
’.‘t.”'-" ! t';_'.’o_.:'
COATFION O3 RO
A 0 Y, o
L Py vy

04 0.6 0.8 1
Dimension 1

0.4

Dimension 20

0.2

. 1: Halton sequences in dimentions 1x20

=
da

Dimension 21

0.6

04 08 1
Dimension 20
Fig. 2: Halton sequences in dimension 20x21
R R R R TRy
g 08 A SR
At LAY
5 06 %f Pt ot
J;
£ 04
O 02
0-

Dimension 1

Fig. 3: Sobol sequences in dimension 1 <20

Independence: Each part of a random sequence should be
mdependent from other parts. In the sample sequence
(my, m,, ...), random numbers generate in the d-dimensional
space so, the sample part of this sequence:

d—tuples=m, , m,, ..., My,

Which 13 uniformity distribution should be
independence in the d-dimensional cube [0, 17* for
example in Halton sequence (Wang, 2000) which 15 the
low discrepancy method to generate random numbers
decreased independence in the high dimensional (Fig. 1
and 2). Also, this multi-dimensional ¢lustering is clear in
the high dimensional, the Sobol sequence (Kumar et af.,
2010) (Fig. 3 and 4).

Efficient length of period: Some classic algorithms for
PRNGs such as Middle square method and Middle
product method, although have the unique characteristic
to generate pseudo-random numbers but they not enough
length of periods. This problem solved by Ralimov et al.
(2010).

85

1

0.8

0.6

0.4

Dimension 21

0.2

o=
Dimension 20

Fig. 4: Sobol sequences in dimension 20x21

Unpredictability: Unpredictability 1s one of the important
points in cryptography because the random sequence
with these advantages (ie., efficient length of period,
good independency and umiformity of distribution) could
be predictable thus existing a lot of threats in the secret
communication. So, we need to generate the sequence
unpredictability.

In the sample sequence (m,, m,, .., m,,m), inthe
best conditions if a group of hackers have the largest part
of this sequence (i.e., mg, my, ..., m,). In the unpredictable
PRNG, they are not able to guess m, with probability
>50%. The chaotic maps in combimnation with predictable
PRNGs method such as LFSR (which 1s implemented by
the small number of register) are able to improve
advantage of unpredictability by using excusive or
operation between LFSR’s system and chaotic logistic
map, this theorem proved by Babaei (2011).

MATERIALS AND METHODS

Improving PRNGs: In the main part of this study,
researchers discuss about how the PRNGs weaknesses
could be improved. Now-a-days, a lot of scientists
research on this subject and prepared reliable methods to
improve these defects m generators, especially the
applications of PRNGs in cryptography need to be more
efficient than other applications.

Decimation method: In this method, two PRNGs generate
random numbers in the two different sequences (the type
of PRNGs may be same or different). Combination based
on this method 13 able to generate more efficient random
sequence. Decimation algorithm is described as:

float* Decimation()

float *finalSeq;

boolean continueGenerating=True;
int countPRNG=0;

char ans;

finalSeq=new float[100];
while(continueGenerating)

{
int loopLength=PRNG1 (),

J. Modern Mathe. Stat., 5 (4): 84-88, 2011

for(int i=1; i<=loopLength; i++)

flooat randomNumber=PRNG2();
finalS eq[countPRNG]—randomNumber;
}
cout<<’Do you want more?(y/n) <<endl;
cin=>=ans;
if{ans = *n’ || ans ="N")
break;
}
return finalSeq;
}

On the other words, this algomthm m Line 10
generates sequence (P, Po Pu - Pu) and in Line 12
generates sequence (qy, Qg Qs -)y 50 Decimation
method generated final sequence as result:

qu’qP1+P2’ qP1+P2+P3""’ qP1+P2+ +Pn

Many researches proved generated random sequence
by this method is more efficient than discrete sequences
[], it means that distribution(SeqDecimation)>
distribution(PRNG1) and distribution(SeqDecimation)=
distribution(PRNG?2).

XOR operation and combination PRNGs: One of the
popular models to improve PRNG’s defects 15 combining
k numbers of generator by XOR operation. For example if
each of the generators is defined by a primitive trinomial
such as:

PT, (x)=x* +x* +1

This is the main structure of Fibonacci LFSR
generators which rk is distinct primitive degrees then
proved that combination of these k generator has period
at least:

k
2m—1H(2rk _ 1)
k=1

In this case, present various PRNGs with different
efficiency which can be classified into two main groups.
This classification done by Babaei (2011) and divided
combination based constructors

generators on

components:

Class 1: Classic generator XOR classic generator
Class 2: Classic generator XOR modern generator
Class 3: Modern generator XOR modern generator

Based on this classification, classic generator (e.g.,
Low discrepancy methods (Wang, 2000), High
discrepancy methods, LFSR methods (Babaei, 2011) and
modern generators contain any type of discrete chaotic
maps (e.g., Henon, Logistic and Gauss map).

86

Shuffling method: Tn this method, two PRNGs generate
two different random sequences like Decimation method,
one of the sequence stores in the buffer area and the
other chooses from buffer side. Shuffling algorithm 1s
described:

float* Shuffling()

float *finalSeq;
float *buffer;
int bufferLength = 100;
char ans;
boolean continueGenerating=True;
int countPRNG=0;
finalSeq=mew float[100];
buffer—new float[100];
while(continueGenerating)
{
for(int i=0;i<bufferLength;i++)
buffer[i[=PRNG1;
int selection = PRNG?2;
finalSeq[countPRNG]=buffer{ selection];
cout=<"Do you want more ?2&/m) <<endl;

cin=>ans;
iflans = *n’ || ans ="N")
break;
}
return finalSeq;
}
RESULTS AND DISCUSSION

Statistical tests: Reliable and secure PRNGs
implemented based on strong mathematical analysis of
their properties. After that the sample sequences generate
and submitted to empirical statistical tests. These
statistical tests disclose varied weaknesses in the sample
sequences, o0 to achieve this goal in the source code of
these tests the sub-function is responsible for mapping
the sequence of random numbers into mterval (0, 1) as a
real variable number X because in this interval have a
better approximation than the other intervals. For random
variable, X passing approximation distribution tests is so
important to generate secure PRNGs but it’s not enough.
In order to confidence a PRNGs, especially as parts of
cryptography algorithms, it should be tested as an input
parameter in the softwares system test. In the next
briefly introduced the best systems.
Table 1-3 showed the results of well-known or widely
used PRNGs beside proposed PRNGs by Ralumov ef al.
(2010) and Babaei (2011).

arc

sub-sections

TestU01: This test 1s designed in the four classes of
modules, implementing a per-programed of PRNG;
implementing statistical tests; implementing per-defined
batteries of tests and implementing tools for applying
tests to entire families of PRNGs. These modules are
implemented m the ANSI C language and offer the best

J. Modern Mathe. Stat., 5 (4): 84-88, 2011

Table 1: Results of TestU01 for various PRNGs
Butteries tests

Generators LogP t-32 Small crush Crush Big crush
LCG* 24 39 14 - -
LCG 57 4.2 1 10 17
LFib° 85 38 2 9 14
MSM 101 3.0 5 45 -
Choatic MSM? 27 32 9 10 16
MPM 105 3.2 7 47 -
Choatic MPM? 29 34 10 11 13
Fibonacci LFSR 30 4.1 17 - -
Glaois LFSR 31 4.0 15 - -
Choatic LFSR? 32 4.2 9 12 14
Table 2: Results of NIST for various PRNGs (Part 1)

Block CuSums CuSums
Generators Frequency frequency forward backward
LCG 0.804645 0764534 0.193567 0.002323
LCG 0.985634 0.893467 0220087 0.012678
LFib* 0.875379 0026789 0.579834 0.126789
MSM 0.008733 0128008 0.873456 0.009367
Choatic MSM? 0.804645 0322001 0.265567 0.090388
MPM 0.837330 0.127835 0.783606 0.091678
Choatic MPM? 0.963720 0.762609 0.126709 0.201289
Fibonacci LFSR 0.535558 0.256881 0.125567 0.558502
Glaois LFSR 0.269087 0.269087 0.390767 0.389001
Choatic LFSR? 0.606499 0.483676 0.553505 0.769260
Table 3: Results of NIST for various PRNGs (Part 2)
Generators Rans Long mun Rank FFT
LCG* 0.876522 0.0036340 0.347851 0.000147
LCG 0.753678 0.1256200 0.892736 0.000951
LFib* 0.595634 0.0913567 0.012673 0.000566
MSM 0.463678 0.0012370 0.347851 0.000159
Choatic MSM? 0.569766 0.0666730 0.248649 0.000159
MPM 0.673640 0.0873670 0.001267 0.000159
Choatic MPM? 0.883830 0.2837090 0.337328 0.000159
Fibonacci LFSR 0.578382 0.0123430 0.859903 0.000159
Glaois TLFSR 0.369001 0.1556720 0.790510 0.000159
Choatic LFSR? 0.425020 0.1742490 0.967341 0.000159

a: (224, 16598013, 12820163); b: (259, 1313, 0); ¢: (231, 55, 24) and d:
Logistic map

collection of utilities for the empirical statistical testing
(McCullough, 2006). The results of the test suites is
classified into three classes, small crush (consist of 10
tests), crush (consist of 60 tests) and big crush (consist
of 45 tests). In Table 1, the column log, in the
mathematical equation shows the number of period length
p in the logarithm in base 2. The column t-32 shows the
CPU time which 1s required to generate a sample sequence
with length 10° of random numbers on a 32 bit computer.
This computer has intel pentium processor of clock speed
2.8 GHz which the Ubuntu 8.10 as OS is running on it.
Also, the small dash (-) indicates that the test was not
applied to this particular PRNG, usually because the
PRING was already failed mto smaller battery. The results
of TestlJ01 is shown in Table 1.

NIST: One of the most powerful statistical tests 1s NIST
tests suite, it is contain 15 tests which they are based on

nmull hypothesis testing. This package focuses on large
types of general non-randomness on the target sequences
(NIST, 2000). All of the tests are standard normal and the
amount of the Chi-square as reference distribution. So if
the current sequence which is under test is non-random,
the software calculates an unacceptable value for
sequence distribution. The results of eight NIST tests are
shown in Table 2 and 3.

CONCLUSION

In this study, researchers discussed about some
important factors to generate pseudo-random numbers
such as uniformity of distribution, independence, efficient
length of period and unpredictability.

After that some good PRNG methods presented
which are proved their reliability by the researcher in his
previous publications. Finally, the statistical tests (i.e.,
TestU01 and NIST suite tests) are described and the
results are reported.

REFERENCES

Babaei, M., 2011. Improved performance of LFSR's system
with discrete chaotic iterations. World Applied Sci.
I, (In Press).

Ergun, S. and 5. Ozoguz, 2007. Truly random number
generators based on a non-autonomous chaotic
oscillator. AEU-Int. I. Electron. Commun., 62: 235-242.

Fechner, B. and A. Osterloh, 2010. A meta-level true
random number generator. Int. J. Crit. Comput. Based
Syst., 1: 267-279.

Hu, Y., ¥X. Liao, K.W. Wong and Q. Zhou, 2009. A true
random number generator based on mouse
movement and chaotic cryptography. Chaos Solitons
Fractals, 40: 2286-2293.

Tun, B. and P. Kocher, 1999. The intel random number
generator. White Paper Prepared for Intel
Corporation.

Kumar, P.S., R. Subramaman and D.T. Selvam, 2010.
Ensuring data storage security in cloud computing
using sobol sequence. Proceeding of the 1st
Intermnational Conference on Parallel, Distributed and
Grid Computing, Oct. 28-30, Solan, pp: 217-222.

McCullough, B.D., 2006. A review of TESTUO1L. J. Applied
Econ., 21: 677-682.

Menezes, A.J., P.C. van Qorschot and S.A. Vanstone,
1997. Handbook of Applied Cryptography. CRC
Press, USA., ISBN: 0-8493-8523-7.

Patidar, V., K.K. Sud and N.K. Pareek, 2009. A pseudo
random bit generator based on chaotic logistic map
and its statistical testing. J. Informatical, 33: 441-452.

J. Modern Mathe. Stat., 5 (4): 84-88, 2011

Rahimov, H., M. Babaei and H. Hassanabadi, 2010. Wang, X., 2000. Randomized halton sequences. J. Math.
Tmproving middle square method RNG using chaotic Comput. Modell., 32: 887-899.

map. J. Applied Math., 2: 482-4%6. o Wang, L., F.P. Wang and Z.J. Wang, 2006. Novel chacs-
Shparlinski, LE., 2004. On the uniformity of distribution of
the decryption exponent in fixed encryption exponent

RSA. Inform. Proc. Lett., 92: 143-147.

based pseudo-random number generator. Acta Phys.
Sin., 55: 3964-3968.

88

